期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control 被引量:15
1
作者 Zhang Yu Chen Jing Shen Lincheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1038-1056,共19页
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits... This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment. 展开更多
关键词 Air-to-surface attack Direct method Inverse dynamics Motion planning Real time control Receding horizon control Trajectory planning Unmanned combat aerial vehicles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部