Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem ...Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem of plasticity loss in neural networks.Plasticity loss is the difficulty of learning new knowledge after the network has converged.To this end,we propose a motivational curriculum learning distributed proximal policy optimization(MCLDPPO)algorithm,through which trained agents can significantly outperform the predictive game tree and mainstream reinforcement learning methods.The motivational curriculum learning is designed to help the agent gradually improve its combat ability by observing the agent's unsatisfactory performance and providing appropriate rewards as a guide.Furthermore,a complete tactical maneuver is encapsulated based on the existing air combat knowledge,and through the flexible use of these maneuvers,some tactics beyond human knowledge can be realized.In addition,we designed an interruption mechanism for the agent to increase the frequency of decisionmaking when the agent faces an emergency.When the number of threats received by the agent changes,the current action is interrupted in order to reacquire observations and make decisions again.Using the interruption mechanism can significantly improve the performance of the agent.To simulate actual air combat better,we use digital twin technology to simulate real air battles and propose a parallel battlefield mechanism that can run multiple simulation environments simultaneously,effectively improving data throughput.The experimental results demonstrate that the agent can fully utilize the situational information to make reasonable decisions and provide tactical adaptation in the air combat,verifying the effectiveness of the algorithmic framework proposed in this paper.展开更多
In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position beco...In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.展开更多
Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is ...Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is well-suited to tackle such complex states and actions. However, it is not necessary to fuzzify the variables that have definite discrete semantics.Hence, the aim of this study is to improve the level of model abstraction by proposing multiple levels of cascaded hierarchical structures from the perspective of function, namely, the functional decision tree. This method is developed to represent behavioral modeling of air combat systems, and its metamodel,execution mechanism, and code generation can provide a sound basis for function-based behavioral modeling. As a proof of concept, an air combat simulation is developed to validate this method and the results show that the fighter Alpha built using the proposed framework provides better performance than that using default scripts.展开更多
Lying in her makeshift hospital bed,Joyce Tembo thanked medical personnel for evacuating her to the designated national cholera treatment centre,6 km north of Zambia’s capital Lusaka.She was recently diagnosed with d...Lying in her makeshift hospital bed,Joyce Tembo thanked medical personnel for evacuating her to the designated national cholera treatment centre,6 km north of Zambia’s capital Lusaka.She was recently diagnosed with diarrhoeal disease.Tembo,43,commended the medical sta!stationed at the treatment centre for their great service to thousands of patients,especially women and children seeking urgent treatment.“I am very grateful to the Chinese doctors who attended to me as soon as the ambulance rushed me to the clinic where I received urgent treatment;they have really saved my life,”Tembo told ChinAfrica.But not all residents in her community are as lucky as her.Many in the densely populated slums die every day due to the area’s poor sanitation-one of the major causes of the cholera outbreak.展开更多
Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain info...Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.展开更多
Aiming at addressing the problem of manoeuvring decision-making in UAV air combat,this study establishes a one-to-one air combat model,defines missile attack areas,and uses the non-deterministic policy Soft-Actor-Crit...Aiming at addressing the problem of manoeuvring decision-making in UAV air combat,this study establishes a one-to-one air combat model,defines missile attack areas,and uses the non-deterministic policy Soft-Actor-Critic(SAC)algorithm in deep reinforcement learning to construct a decision model to realize the manoeuvring process.At the same time,the complexity of the proposed algorithm is calculated,and the stability of the closed-loop system of air combat decision-making controlled by neural network is analysed by the Lyapunov function.This study defines the UAV air combat process as a gaming process and proposes a Parallel Self-Play training SAC algorithm(PSP-SAC)to improve the generalisation performance of UAV control decisions.Simulation results have shown that the proposed algorithm can realize sample sharing and policy sharing in multiple combat environments and can significantly improve the generalisation ability of the model compared to independent training.展开更多
The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The con...The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The connecting structure of combat entities in it is of great importance for supporting the normal process of the system. In this paper, we explore the optimizing strategy of the structure of the anti-aircraft network by establishing extra communication channels between the combat entities.Firstly, the thought of combat network model(CNM) is borrowed to model the anti-aircraft system as a heterogeneous network. Secondly, the optimization objectives are determined as the survivability and the accuracy of the system. To specify these objectives, the information chain and accuracy chain are constructed based on CNM. The causal strength(CAST) logic and influence network(IN) are introduced to illustrate the establishment of the accuracy chain. Thirdly, the optimization constraints are discussed and set in three aspects: time, connection feasibility and budget. The time constraint network(TCN) is introduced to construct the timing chain and help to detect the timing consistency. Then, the process of the multi-objective optimization of the structure of the anti-aircraft system is designed.Finally, a simulation is conducted to prove the effectiveness and feasibility of the proposed method. Non-dominated sorting based genetic algorithm-Ⅱ(NSGA2) is used to solve the multiobjective optimization problem and two other algorithms including non-dominated sorting based genetic algorithm-Ⅲ(NSGA3)and strength Pareto evolutionary algorithm-Ⅱ(SPEA2) are employed as comparisons. The deciders and system builders can make the anti-aircraft system improved in the survivability and accuracy in the combat reality.展开更多
With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce ...With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.展开更多
The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-d...The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.展开更多
The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low ac...The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low accuracy and strong dependence on prior knowledge,a datadriven situation assessment method is proposed.The clustering and classification are combined,the former is used to mine situational knowledge,and the latter is used to realize rapid assessment.Angle evaluation factor and distance evaluation factor are proposed to transform multi-dimensional air combat information into two-dimensional features.A convolution success-history based adaptive differential evolution with linear population size reduc-tion-means(C-LSHADE-Means)algorithm is proposed.The convolutional pooling layer is used to compress the size of data and preserve the distribution characteristics.The LSHADE algorithm is used to initialize the center of the mean clustering,which over-comes the defect of initialization sensitivity.Comparing experi-ment with the seven clustering algorithms is done on the UCI data set,through four clustering indexes,and it proves that the method proposed in this paper has better clustering performance.A situation assessment model based on stacked autoen-coder and learning vector quantization(SAE-LVQ)network is constructed,and it uses SAE to reconstruct air combat data fea-tures,and uses the self-competition layer of the LVQ to achieve efficient classification.Compared with the five kinds of assess-ments models,the SAE-LVQ model has the highest accuracy.Finally,three kinds of confrontation processes from air combat maneuvering instrumentation(ACMI)are selected,and the model in this paper is used for situation assessment.The assessment results are in line with the actual situation.展开更多
The key advantage of unmanned swarm operation is its autonomous cooperation. How to improve the proportion of cooperators is one of the key issues of autonomous collaboration in unmanned swarm operations. This work pr...The key advantage of unmanned swarm operation is its autonomous cooperation. How to improve the proportion of cooperators is one of the key issues of autonomous collaboration in unmanned swarm operations. This work proposes a strategy dominance mechanism of autonomous collaboration in unmanned swarm within the framework of public goods game. It starts with the requirement analysis of autonomous collaboration in unmanned swarm;and an aspiration-driven multiplayer evolutionary game model is established based on the requirement. Then the average abundance function and strategy dominance condition of the model are constructed by theoretical derivation. Furthermore, the evolutionary mechanism of parameter adjustment in swarm cooperation is revealed via simulation,and the influences of the multiplication factor r, aspiration levelα, threshold m and other parameters on the strategy dominance conditions were simulated for both linear and threshold public goods games(PGGs) to determine the strategy dominance characteristics;Finally, deliberate proposals are suggested to provide a meaningful exploration in the actual control of unmanned swarm cooperation.展开更多
Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to differen...Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to different military medical services as primary combat surgeons. This study aimed to assess the role of this pre-service training in improving their confidence with combat medical skills, after several years since they received the training. Methods: We conducted a nationwide survey of 239 primary combat surgeons who have ever participated in an entry-level FST training program before deployment between June 2016 and June 2020, which was for evaluating on a 5-point Likert scale the benefits of entry-level FST training and conventional surgery training in improving their confidence with combat medical skills. The difference in scores was compared using the student t-test. Significance was considered as P Results: The total score was significantly higher for entry-level FST training than that for conventional surgery training (30.76 ± 4.33 vs. 28.95 ± 4.80, P There was no significant difference between the training for surgical skills confidence scores (18.03 ± 8.04 vs. 17.51 ± 8.30, P = 0.098), but for non-technical skills, the score of entry-level FST training was significantly higher than that of conventional surgery training (12.73 ± 5.39 vs. 11.44 ± 5.62, P The distributions of confidence scores were different under various subgroups by demographics. There were no significant differences in scores between the two training in all specific surgical skill sets except “life-saving surgery” (P = 0.011). Scores of all 4 non-technical skill sets were significantly higher for entry-level FST than those for conventional surgery training (P Conclusions: The training should be considered as an essential strategy to improve confidence in combat medical skills, especially life-saving surgery and non-technical skills, for primary combat surgeons.展开更多
Review of China-Africa relations in 2022 and prospects for 2023.THE year 2022 was the first year of implementing the outcomes of the Eighth Ministerial Conference of the Forum on China-Africa Cooperation(FOCAC)held in...Review of China-Africa relations in 2022 and prospects for 2023.THE year 2022 was the first year of implementing the outcomes of the Eighth Ministerial Conference of the Forum on China-Africa Cooperation(FOCAC)held in November 2021 in Dakar,Senegal,which adopted four outcome documents,namely the Dakar Declaration,the China-Africa Cooperation Vision 2035,the Declaration on China-Africa Cooperation on Combating Climate Change,and the Dakar Action Plan(2022-2024).展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
The characteristics of the confrontation between fighters and air-defense systems on ship are analyzed. The approach of simulating operations of both sides is presented based on the combination of random-factor effect...The characteristics of the confrontation between fighters and air-defense systems on ship are analyzed. The approach of simulating operations of both sides is presented based on the combination of random-factor effectiveness simulation models and deterministic models. Two basic indices are proposed to indicate task effectiveness (i. e. the survival probability of the fighter team and the specified effect of damage on the fleet) and relative algo- rithms. To verify the approach, the situation that a fighter team attacks a collective defense fleet is exemplified and the task effectiveness of this case is also calculated. The method for evaluating task effectiveness on anti-ship attack can be applied in aircraft design and tactical research.展开更多
The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susce...The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susceptibility. A tactical scenario for a strike mission is presented. The effect of aircraft radar cross section on the detection probability of a threat radar, as well as that of onboard jammer, are investigated. The guidance errors of radar guided surface to air missile and anti aircraft artillery, which are disturbed by radar cross section reduction or jammer radiated power and both of them are determined. The probability of aircraft kill given a single shot is calculated and finally the sortie survivability of an attack aircraft in a supposed hostile thread environment worked out. It is demonstrated that the survivability of a combat aircraft will be greatly enhanced by the combined radar stealth and onboard electronic attack, and the evaluation metho dology is effective and applicable.展开更多
At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe...At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.展开更多
The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that ope...The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.展开更多
To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov pr...To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.展开更多
文摘Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem of plasticity loss in neural networks.Plasticity loss is the difficulty of learning new knowledge after the network has converged.To this end,we propose a motivational curriculum learning distributed proximal policy optimization(MCLDPPO)algorithm,through which trained agents can significantly outperform the predictive game tree and mainstream reinforcement learning methods.The motivational curriculum learning is designed to help the agent gradually improve its combat ability by observing the agent's unsatisfactory performance and providing appropriate rewards as a guide.Furthermore,a complete tactical maneuver is encapsulated based on the existing air combat knowledge,and through the flexible use of these maneuvers,some tactics beyond human knowledge can be realized.In addition,we designed an interruption mechanism for the agent to increase the frequency of decisionmaking when the agent faces an emergency.When the number of threats received by the agent changes,the current action is interrupted in order to reacquire observations and make decisions again.Using the interruption mechanism can significantly improve the performance of the agent.To simulate actual air combat better,we use digital twin technology to simulate real air battles and propose a parallel battlefield mechanism that can run multiple simulation environments simultaneously,effectively improving data throughput.The experimental results demonstrate that the agent can fully utilize the situational information to make reasonable decisions and provide tactical adaptation in the air combat,verifying the effectiveness of the algorithmic framework proposed in this paper.
基金National Key R&D Program of China(Grant No.2021YFA1000402)National Natural Science Foundation of China(Grant No.72071159)to provide fund for conducting experiments。
文摘In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.
基金This work was supported by the National Natural Science Foundation of China(62003359).
文摘Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is well-suited to tackle such complex states and actions. However, it is not necessary to fuzzify the variables that have definite discrete semantics.Hence, the aim of this study is to improve the level of model abstraction by proposing multiple levels of cascaded hierarchical structures from the perspective of function, namely, the functional decision tree. This method is developed to represent behavioral modeling of air combat systems, and its metamodel,execution mechanism, and code generation can provide a sound basis for function-based behavioral modeling. As a proof of concept, an air combat simulation is developed to validate this method and the results show that the fighter Alpha built using the proposed framework provides better performance than that using default scripts.
文摘Lying in her makeshift hospital bed,Joyce Tembo thanked medical personnel for evacuating her to the designated national cholera treatment centre,6 km north of Zambia’s capital Lusaka.She was recently diagnosed with diarrhoeal disease.Tembo,43,commended the medical sta!stationed at the treatment centre for their great service to thousands of patients,especially women and children seeking urgent treatment.“I am very grateful to the Chinese doctors who attended to me as soon as the ambulance rushed me to the clinic where I received urgent treatment;they have really saved my life,”Tembo told ChinAfrica.But not all residents in her community are as lucky as her.Many in the densely populated slums die every day due to the area’s poor sanitation-one of the major causes of the cholera outbreak.
基金supported by the National Natural Science Foundation of China(Grant No.61933010 and 61903301)Shaanxi Aerospace Flight Vehicle Design Key Laboratory。
文摘Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.
基金National Natural Science Foundation of China,Grant/Award Number:62003267Fundamental Research Funds for the Central Universities,Grant/Award Number:G2022KY0602+1 种基金Technology on Electromagnetic Space Operations and Applications Laboratory,Grant/Award Number:2022ZX0090Key Core Technology Research Plan of Xi'an,Grant/Award Number:21RGZN0016。
文摘Aiming at addressing the problem of manoeuvring decision-making in UAV air combat,this study establishes a one-to-one air combat model,defines missile attack areas,and uses the non-deterministic policy Soft-Actor-Critic(SAC)algorithm in deep reinforcement learning to construct a decision model to realize the manoeuvring process.At the same time,the complexity of the proposed algorithm is calculated,and the stability of the closed-loop system of air combat decision-making controlled by neural network is analysed by the Lyapunov function.This study defines the UAV air combat process as a gaming process and proposes a Parallel Self-Play training SAC algorithm(PSP-SAC)to improve the generalisation performance of UAV control decisions.Simulation results have shown that the proposed algorithm can realize sample sharing and policy sharing in multiple combat environments and can significantly improve the generalisation ability of the model compared to independent training.
基金supported by the National Natural Science Foundation of China(72071206).
文摘The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The connecting structure of combat entities in it is of great importance for supporting the normal process of the system. In this paper, we explore the optimizing strategy of the structure of the anti-aircraft network by establishing extra communication channels between the combat entities.Firstly, the thought of combat network model(CNM) is borrowed to model the anti-aircraft system as a heterogeneous network. Secondly, the optimization objectives are determined as the survivability and the accuracy of the system. To specify these objectives, the information chain and accuracy chain are constructed based on CNM. The causal strength(CAST) logic and influence network(IN) are introduced to illustrate the establishment of the accuracy chain. Thirdly, the optimization constraints are discussed and set in three aspects: time, connection feasibility and budget. The time constraint network(TCN) is introduced to construct the timing chain and help to detect the timing consistency. Then, the process of the multi-objective optimization of the structure of the anti-aircraft system is designed.Finally, a simulation is conducted to prove the effectiveness and feasibility of the proposed method. Non-dominated sorting based genetic algorithm-Ⅱ(NSGA2) is used to solve the multiobjective optimization problem and two other algorithms including non-dominated sorting based genetic algorithm-Ⅲ(NSGA3)and strength Pareto evolutionary algorithm-Ⅱ(SPEA2) are employed as comparisons. The deciders and system builders can make the anti-aircraft system improved in the survivability and accuracy in the combat reality.
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Projects No.52202012)the National Natural Science Foundation of China(Projects No.51834007)。
文摘With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.
基金supported by the National Natural Science Foundation of China(61673209,71971115)。
文摘The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.
基金supported by the Natural Science Foundation of Shaanxi Province(2020JQ-481,2021JM-224)the Aeronautical Science Foundation of China(201951096002).
文摘The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low accuracy and strong dependence on prior knowledge,a datadriven situation assessment method is proposed.The clustering and classification are combined,the former is used to mine situational knowledge,and the latter is used to realize rapid assessment.Angle evaluation factor and distance evaluation factor are proposed to transform multi-dimensional air combat information into two-dimensional features.A convolution success-history based adaptive differential evolution with linear population size reduc-tion-means(C-LSHADE-Means)algorithm is proposed.The convolutional pooling layer is used to compress the size of data and preserve the distribution characteristics.The LSHADE algorithm is used to initialize the center of the mean clustering,which over-comes the defect of initialization sensitivity.Comparing experi-ment with the seven clustering algorithms is done on the UCI data set,through four clustering indexes,and it proves that the method proposed in this paper has better clustering performance.A situation assessment model based on stacked autoen-coder and learning vector quantization(SAE-LVQ)network is constructed,and it uses SAE to reconstruct air combat data fea-tures,and uses the self-competition layer of the LVQ to achieve efficient classification.Compared with the five kinds of assess-ments models,the SAE-LVQ model has the highest accuracy.Finally,three kinds of confrontation processes from air combat maneuvering instrumentation(ACMI)are selected,and the model in this paper is used for situation assessment.The assessment results are in line with the actual situation.
基金supported by the National Natural Science Foundation of China(71901217)the National Key R&D Program of China(2018YFC0806900).
文摘The key advantage of unmanned swarm operation is its autonomous cooperation. How to improve the proportion of cooperators is one of the key issues of autonomous collaboration in unmanned swarm operations. This work proposes a strategy dominance mechanism of autonomous collaboration in unmanned swarm within the framework of public goods game. It starts with the requirement analysis of autonomous collaboration in unmanned swarm;and an aspiration-driven multiplayer evolutionary game model is established based on the requirement. Then the average abundance function and strategy dominance condition of the model are constructed by theoretical derivation. Furthermore, the evolutionary mechanism of parameter adjustment in swarm cooperation is revealed via simulation,and the influences of the multiplication factor r, aspiration levelα, threshold m and other parameters on the strategy dominance conditions were simulated for both linear and threshold public goods games(PGGs) to determine the strategy dominance characteristics;Finally, deliberate proposals are suggested to provide a meaningful exploration in the actual control of unmanned swarm cooperation.
文摘Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to different military medical services as primary combat surgeons. This study aimed to assess the role of this pre-service training in improving their confidence with combat medical skills, after several years since they received the training. Methods: We conducted a nationwide survey of 239 primary combat surgeons who have ever participated in an entry-level FST training program before deployment between June 2016 and June 2020, which was for evaluating on a 5-point Likert scale the benefits of entry-level FST training and conventional surgery training in improving their confidence with combat medical skills. The difference in scores was compared using the student t-test. Significance was considered as P Results: The total score was significantly higher for entry-level FST training than that for conventional surgery training (30.76 ± 4.33 vs. 28.95 ± 4.80, P There was no significant difference between the training for surgical skills confidence scores (18.03 ± 8.04 vs. 17.51 ± 8.30, P = 0.098), but for non-technical skills, the score of entry-level FST training was significantly higher than that of conventional surgery training (12.73 ± 5.39 vs. 11.44 ± 5.62, P The distributions of confidence scores were different under various subgroups by demographics. There were no significant differences in scores between the two training in all specific surgical skill sets except “life-saving surgery” (P = 0.011). Scores of all 4 non-technical skill sets were significantly higher for entry-level FST than those for conventional surgery training (P Conclusions: The training should be considered as an essential strategy to improve confidence in combat medical skills, especially life-saving surgery and non-technical skills, for primary combat surgeons.
文摘Review of China-Africa relations in 2022 and prospects for 2023.THE year 2022 was the first year of implementing the outcomes of the Eighth Ministerial Conference of the Forum on China-Africa Cooperation(FOCAC)held in November 2021 in Dakar,Senegal,which adopted four outcome documents,namely the Dakar Declaration,the China-Africa Cooperation Vision 2035,the Declaration on China-Africa Cooperation on Combating Climate Change,and the Dakar Action Plan(2022-2024).
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
文摘The characteristics of the confrontation between fighters and air-defense systems on ship are analyzed. The approach of simulating operations of both sides is presented based on the combination of random-factor effectiveness simulation models and deterministic models. Two basic indices are proposed to indicate task effectiveness (i. e. the survival probability of the fighter team and the specified effect of damage on the fleet) and relative algo- rithms. To verify the approach, the situation that a fighter team attacks a collective defense fleet is exemplified and the task effectiveness of this case is also calculated. The method for evaluating task effectiveness on anti-ship attack can be applied in aircraft design and tactical research.
文摘The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susceptibility. A tactical scenario for a strike mission is presented. The effect of aircraft radar cross section on the detection probability of a threat radar, as well as that of onboard jammer, are investigated. The guidance errors of radar guided surface to air missile and anti aircraft artillery, which are disturbed by radar cross section reduction or jammer radiated power and both of them are determined. The probability of aircraft kill given a single shot is calculated and finally the sortie survivability of an attack aircraft in a supposed hostile thread environment worked out. It is demonstrated that the survivability of a combat aircraft will be greatly enhanced by the combined radar stealth and onboard electronic attack, and the evaluation metho dology is effective and applicable.
文摘At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.
基金Research Fund from Science and Technology on Underwater Vehicle Laboratory
文摘The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.
基金supported by the National Natural Science Foundation of China(61601505)the Aeronautical Science Foundation of China(20155196022)the Shaanxi Natural Science Foundation of China(2016JQ6050)
文摘To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.