During the period when a GPS satellite,the Earth and the Sun are approximately collinear,the phenomenon of eclipsing the satellite occurs,when the satellite yaw attitude deviates from its nominal case,i.e. the body X-...During the period when a GPS satellite,the Earth and the Sun are approximately collinear,the phenomenon of eclipsing the satellite occurs,when the satellite yaw attitude deviates from its nominal case,i.e. the body X-axis cannot point towards the Sun for Block II&IIA or away from it for Block IIR satellites. The yaw attitude of the eclipsing satellites has a significant influence on both the satellite clock estimation at each International GNSS Service (IGS) Analysis Center (AC) and for users of the precise point positioning (PPP) implementations. It is known that,during the eclipsing periods,inconsistent yaw attitude models among the ACs will contribute to the errors of the IGS combined clock products. As for the PPP user,the influence of the eclipsing satellite is two-fold. First,as the satellite clocks are always kept fixed during PPP implementation,the above-mentioned problematic IGS clocks will inevitably be passed on to the PPP estimates. Second,the improper yaw attitude modeling of the eclipsing satellite will cause a correction bias exceeding 1 dm for the two kinds of attitude-related systematic errors,namely the phase wind-up and satellite antenna phase center offset,which will further deteriorate the accuracy of the PPP solutions. A yaw attitude model is introduced in this paper with the aim of improving the reliability of PPP solutions during the satellite eclipsing period.展开更多
基金supported by the National Science Foundation for Distinguished Young Scholars (40625013)the National Natural Science Foundation of China (40890160 and 40874009)the National High-Tech Research and Development Program of China (2007AA12Z311,2007A-A12-Z305)
文摘During the period when a GPS satellite,the Earth and the Sun are approximately collinear,the phenomenon of eclipsing the satellite occurs,when the satellite yaw attitude deviates from its nominal case,i.e. the body X-axis cannot point towards the Sun for Block II&IIA or away from it for Block IIR satellites. The yaw attitude of the eclipsing satellites has a significant influence on both the satellite clock estimation at each International GNSS Service (IGS) Analysis Center (AC) and for users of the precise point positioning (PPP) implementations. It is known that,during the eclipsing periods,inconsistent yaw attitude models among the ACs will contribute to the errors of the IGS combined clock products. As for the PPP user,the influence of the eclipsing satellite is two-fold. First,as the satellite clocks are always kept fixed during PPP implementation,the above-mentioned problematic IGS clocks will inevitably be passed on to the PPP estimates. Second,the improper yaw attitude modeling of the eclipsing satellite will cause a correction bias exceeding 1 dm for the two kinds of attitude-related systematic errors,namely the phase wind-up and satellite antenna phase center offset,which will further deteriorate the accuracy of the PPP solutions. A yaw attitude model is introduced in this paper with the aim of improving the reliability of PPP solutions during the satellite eclipsing period.