Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a ...Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy. Over the years, studies have shown that a combinative model gives better projected results compared to a single model. In this study, we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015. The new proposed PCMACP model shows more reliable and accurate results: its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range. According to the PCMACP model, the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China.展开更多
As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learnin...As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learning methods—BP neural network, SVM and random forest, we can derive the accuracy of them in forecasting AD, so that we can compare the methods in solving AD prediction. Among them, random forest is the most accurate method. Moreover, to combine the advantages of the methods, we build a new combination forecasting model based on the three machine learning models, which is proved more accurate than the models singly. At last, we give the conclusion of the connection between life style and AD, and provide several suggestions for elderly people to help them prevent AD.展开更多
To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided ...To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided into two stages which are forecasting model selection and weighted combination forecasting.Based on Markov chain conversion and cloud model,the forecasting model selection is implanted and several outstanding models are selected for the combination forecasting.For the weighted combination forecasting,a fuzzy scale joint evaluation method is proposed to determine the weight of selected forecasting model.The percentage error and mean absolute percentage error of weighted combination forecasting result of the power consumption in a certain area of China are 0.7439%and 0.3198%,respectively,while the maximum values of these two indexes of single forecasting models are 5.2278%and 1.9497%.It shows that the forecasting indexes of proposed model are improved significantly compared with the single forecasting models.展开更多
This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined...This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined with various traditional forecasting time-series models,such as Least Square Support Vector Machine(LSSVM),Artificial Neural Network(ANN)and Multivariate Adaptive Regression Splines(MARS)and their effects are examined in terms of the statistical estimations.The WD has been used as a mathematical application in traditional forecast modelling to collect periodically measured parameters,which has yielded tremendous constructive outcomes.Further,it is observed that the wavelet combined models are classy compared to the various time series models in terms of performance basis.Therefore,combining wavelet forecasting models has yielded much better results.展开更多
Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a mo...Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a more reliable reference in terms of artificial intelligence index investment,this paper selects the NASDAQ CTA Artificial Intelligence and Robotics(AIRO)Index as the research target,and proposes innovative hybrid methods to forecast returns by considering its multiple structural characteristics.Specifically,this paper uses the ensemble empirical mode decomposition(EEMD)method and the modified iterative cumulative sum of squares(ICSS)algorithm to decompose the index returns and identify the structural breakpoints.Furthermore,it combines the least-square support vector machine approach with the particle swarm optimization method(PSO-LSSVM)and the generalized autoregressive conditional heteroskedasticity(GARCH)type models to construct innovative hybrid forecasting methods.On the one hand,the empirical results indicate that the AIRO index returns have complex structural characteristics,and present time-varying and nonlinear characteristics with high complexity and mutability;on the other hand,the newly proposed hybrid forecasting method(i.e.,the EEMD-PSO-LSSVM-ICSS-GARCH models)which considers these complex structural characteristics,can yield the optimal forecasting performance for the AIRO index returns.展开更多
基金supported by the Youth Fund of Chinese Academy of Sciences Knowledge Innovation Program area frontier projects (No. S200603)the Innovation Team Project of Education Department of Liaoning Province (No. 2007T050)
文摘Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy. Over the years, studies have shown that a combinative model gives better projected results compared to a single model. In this study, we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015. The new proposed PCMACP model shows more reliable and accurate results: its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range. According to the PCMACP model, the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China.
文摘As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learning methods—BP neural network, SVM and random forest, we can derive the accuracy of them in forecasting AD, so that we can compare the methods in solving AD prediction. Among them, random forest is the most accurate method. Moreover, to combine the advantages of the methods, we build a new combination forecasting model based on the three machine learning models, which is proved more accurate than the models singly. At last, we give the conclusion of the connection between life style and AD, and provide several suggestions for elderly people to help them prevent AD.
文摘To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided into two stages which are forecasting model selection and weighted combination forecasting.Based on Markov chain conversion and cloud model,the forecasting model selection is implanted and several outstanding models are selected for the combination forecasting.For the weighted combination forecasting,a fuzzy scale joint evaluation method is proposed to determine the weight of selected forecasting model.The percentage error and mean absolute percentage error of weighted combination forecasting result of the power consumption in a certain area of China are 0.7439%and 0.3198%,respectively,while the maximum values of these two indexes of single forecasting models are 5.2278%and 1.9497%.It shows that the forecasting indexes of proposed model are improved significantly compared with the single forecasting models.
文摘This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined with various traditional forecasting time-series models,such as Least Square Support Vector Machine(LSSVM),Artificial Neural Network(ANN)and Multivariate Adaptive Regression Splines(MARS)and their effects are examined in terms of the statistical estimations.The WD has been used as a mathematical application in traditional forecast modelling to collect periodically measured parameters,which has yielded tremendous constructive outcomes.Further,it is observed that the wavelet combined models are classy compared to the various time series models in terms of performance basis.Therefore,combining wavelet forecasting models has yielded much better results.
基金support from National Natural Science Foundation of China(Nos.71774051,72243003)National Social Science Fund of China(No.22AZD128)the seminar participants in Center for Resource and Environmental Management,Hunan University,China.
文摘Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a more reliable reference in terms of artificial intelligence index investment,this paper selects the NASDAQ CTA Artificial Intelligence and Robotics(AIRO)Index as the research target,and proposes innovative hybrid methods to forecast returns by considering its multiple structural characteristics.Specifically,this paper uses the ensemble empirical mode decomposition(EEMD)method and the modified iterative cumulative sum of squares(ICSS)algorithm to decompose the index returns and identify the structural breakpoints.Furthermore,it combines the least-square support vector machine approach with the particle swarm optimization method(PSO-LSSVM)and the generalized autoregressive conditional heteroskedasticity(GARCH)type models to construct innovative hybrid forecasting methods.On the one hand,the empirical results indicate that the AIRO index returns have complex structural characteristics,and present time-varying and nonlinear characteristics with high complexity and mutability;on the other hand,the newly proposed hybrid forecasting method(i.e.,the EEMD-PSO-LSSVM-ICSS-GARCH models)which considers these complex structural characteristics,can yield the optimal forecasting performance for the AIRO index returns.