Microgrids have been proposed in order to improve reliability and stability of electrical system and to ensure power quality of grid. Microgrid consists of low voltage distribution systems with distributed energy reso...Microgrids have been proposed in order to improve reliability and stability of electrical system and to ensure power quality of grid. Microgrid consists of low voltage distribution systems with distributed energy resources, such as wind turbine and photovoltaic power systems, together with storage devices. It is essential to protect a micro grid in both the grid-connected and the islanded mode of operation against all different types of faults. This paper describes micro grid protection and safety concept with central control and monitoring unit where multifunctional intelligent digital relay could be used. This central control & monitoring infrastructure is used for adaptive relay settings strategy for micro grid protection. Also operational safety design concept and fault mitigation technique is proposed to ensure confidence in protection system.展开更多
The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based c...The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid(e.g., undervoltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with eventdriven control at the operational level. Diff erent case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.展开更多
Customer satisfaction and participation in utility supply packages is the first and foremost factor in the success of any supplying agency whether wholesale or retail dealer. The paper presents the concept of major pr...Customer satisfaction and participation in utility supply packages is the first and foremost factor in the success of any supplying agency whether wholesale or retail dealer. The paper presents the concept of major prospects of non- autonomous micro-grids installed in a certain locality. The article shows the basic background that is required for the installment of micro grid in a particular area and discusses the primary factors or pre-requisites that are required for the existence and operation of micro-grids. It elaborate the major profitable applications and benefits that developing and developed states get by using micro-grids in an area where utility grid is already functioning .It also explains the basic improvement in the quality of supply from micro grid after its installment. It also throws light on afterwards impact on society with this system, such impacts include reliability, tariff rates, economics etc. The article discusses micro-grids as the future of modern power systems. This paper shows significance of modernization by latest topologies in power systems and its effect that will come afterwards.展开更多
This paper considers the distributed control of the LQR problem for discrete-time multiagent systems.Distributed controllers are designed based on the solutions of centralized optimal control and the topological struc...This paper considers the distributed control of the LQR problem for discrete-time multiagent systems.Distributed controllers are designed based on the solutions of centralized optimal control and the topological structure of the systems.Under mild conditions,it is shown that the distributed controller can approximate to the centralized optimal controller.Then the states of the closed-loop systems of the distributed control exponentially converge to the states of the closed-loop systems of the centralized optimal control.Some examples are given to show effectiveness of the proposed results.展开更多
In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordina...In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordinate was used in the lubricant area and mesh was made. The blockweight approach was implemented to deal with non-coincidence of mesh and shallow recess border in numerical method. The finite control volume method was applied in calculating pressure distribution. The flow conservation equation and film thickness model were resolved through Gauss-Siedel relaxation iteration. The calculation and analysis results indicate that compared to the slipper (1) slip- per pressure distribution is improved; (2) hydrodynamic pressure of the combining slipper is greatly increased; (3) inclining degree is greatly reduced; (4) negative pressure in lubricant film disappear. So the combining center cavity slipper is lubricated better.展开更多
Purpose–This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.Design/methodology/approach–The authors proposed a novel safety lane-cha...Purpose–This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.Design/methodology/approach–The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles.A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads.With different steering and braking maneuvers,minimum safe distances were modeled and calculated.Considering safety and ergonomics,the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change.Furthermore,a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability.Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.Findings–The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks.The proposed trajectory model could provide safety lane-change path planning,and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.Originality/value–This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles.There are two main contributions:thefirst is a more quantifiable trajectory model for self-driving articulated vehicles,which provides the opportunity to adapt vehicle and scene changes.The second involves designing a feedback linearization controller,combined with a multi-objective decision-making mode,to improve the comprehensive performance of intelligent vehicles.This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.展开更多
文摘Microgrids have been proposed in order to improve reliability and stability of electrical system and to ensure power quality of grid. Microgrid consists of low voltage distribution systems with distributed energy resources, such as wind turbine and photovoltaic power systems, together with storage devices. It is essential to protect a micro grid in both the grid-connected and the islanded mode of operation against all different types of faults. This paper describes micro grid protection and safety concept with central control and monitoring unit where multifunctional intelligent digital relay could be used. This central control & monitoring infrastructure is used for adaptive relay settings strategy for micro grid protection. Also operational safety design concept and fault mitigation technique is proposed to ensure confidence in protection system.
基金supported in part by the European Commission through the project P2P-Smartest:Peer to Peer Smart Energy Distribution Networks (H2020-LCE-2014-3,project 646469)
文摘The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid(e.g., undervoltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with eventdriven control at the operational level. Diff erent case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.
文摘Customer satisfaction and participation in utility supply packages is the first and foremost factor in the success of any supplying agency whether wholesale or retail dealer. The paper presents the concept of major prospects of non- autonomous micro-grids installed in a certain locality. The article shows the basic background that is required for the installment of micro grid in a particular area and discusses the primary factors or pre-requisites that are required for the existence and operation of micro-grids. It elaborate the major profitable applications and benefits that developing and developed states get by using micro-grids in an area where utility grid is already functioning .It also explains the basic improvement in the quality of supply from micro grid after its installment. It also throws light on afterwards impact on society with this system, such impacts include reliability, tariff rates, economics etc. The article discusses micro-grids as the future of modern power systems. This paper shows significance of modernization by latest topologies in power systems and its effect that will come afterwards.
基金supported by the Taishan Scholar Construction Engineering by Shandong Governmentthe National Natural Science Foundation of China under Grant Nos.61203029,61473134,and 61573220the Scientific Research Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2013DX008
文摘This paper considers the distributed control of the LQR problem for discrete-time multiagent systems.Distributed controllers are designed based on the solutions of centralized optimal control and the topological structure of the systems.Under mild conditions,it is shown that the distributed controller can approximate to the centralized optimal controller.Then the states of the closed-loop systems of the distributed control exponentially converge to the states of the closed-loop systems of the centralized optimal control.Some examples are given to show effectiveness of the proposed results.
基金Supported by the National Key Laboratory Foundation Project(9140C3403010903)
文摘In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordinate was used in the lubricant area and mesh was made. The blockweight approach was implemented to deal with non-coincidence of mesh and shallow recess border in numerical method. The finite control volume method was applied in calculating pressure distribution. The flow conservation equation and film thickness model were resolved through Gauss-Siedel relaxation iteration. The calculation and analysis results indicate that compared to the slipper (1) slip- per pressure distribution is improved; (2) hydrodynamic pressure of the combining slipper is greatly increased; (3) inclining degree is greatly reduced; (4) negative pressure in lubricant film disappear. So the combining center cavity slipper is lubricated better.
文摘Purpose–This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.Design/methodology/approach–The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles.A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads.With different steering and braking maneuvers,minimum safe distances were modeled and calculated.Considering safety and ergonomics,the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change.Furthermore,a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability.Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.Findings–The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks.The proposed trajectory model could provide safety lane-change path planning,and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.Originality/value–This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles.There are two main contributions:thefirst is a more quantifiable trajectory model for self-driving articulated vehicles,which provides the opportunity to adapt vehicle and scene changes.The second involves designing a feedback linearization controller,combined with a multi-objective decision-making mode,to improve the comprehensive performance of intelligent vehicles.This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.