期刊文献+
共找到144篇文章
< 1 2 8 >
每页显示 20 50 100
基于麻雀搜索算法和长短期记忆神经网络的轨道交通站点客流预测
1
作者 张开雯 何勇 +1 位作者 余家香 陈林 《四川师范大学学报(自然科学版)》 CAS 2025年第1期105-113,共9页
准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度... 准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度慢,容易陷入局部最优解的问题,引入黄金莱维飞行策略,通过动态调整探索者移动步长的方法,使得它在未知范围内搜索时,能够覆盖更大的范围,提高SSA算法全局搜索的能力.通过使用ISSA算法对LSTM模型的隐含层、学习率和迭代次数的神经元个数进行优化,构建ISSA-LSTM组合预测模型,用于城市轨道交通短时客流的预测.将该模型与BP、LSTM和SSA-LSTM等3种短时客流预测模型进行对比,结果表明:在针对工作日和非工作日客流的预测中,ISSA-LSTM模型预测误差最小,具有较好的预测效果. 展开更多
关键词 短时客流预测 改进麻雀搜索算法 长短时记忆神经网络 组合模型
下载PDF
Traffic flow prediction of urban road network based on LSTM-RF model 被引量:3
2
作者 ZHAO Shu-xu ZHANG Bao-hua 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第2期135-142,共8页
Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of meth... Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of methods,but most of these methods only use the time domain information of traffic flow data to predict the traffic flow,ignoring the impact of spatial correlation on the prediction of target road segment flow,which leads to poor prediction accuracy.In this paper,a traffic flow prediction model called as long short time memory and random forest(LSTM-RF)was proposed based on the combination model.In the process of traffic flow prediction,the long short time memory(LSTM)model was used to extract the time sequence features of the predicted target road segment.Then,the predicted value of LSTM and the collected information of adjacent upstream and downstream sections were simultaneously used as the input features of the random forest model to analyze the spatial-temporal correlation of traffic flow,so as to obtain the final prediction results.The traffic flow data of 132 urban road sections collected by the license plate recognition system in Guiyang City were tested and verified.The results show that the method is better than the single model in prediction accuracy,and the prediction error is obviously reduced compared with the single model. 展开更多
关键词 traffic flow prediction long short time memory and random forest(LSTM-RF)model random forest combination model spatial-temporal correlation
下载PDF
基于改进金豺算法的短期负荷预测 被引量:3
3
作者 谢国民 王润良 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期65-74,共10页
针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用... 针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用改进金豺算法对双向长短期记忆网络的参数进行优化,并对每个子序列建立预测模型;最后,组合各模型结果得到最终预测值。实验结果表明,本文模型预测精度更高,与真实值拟合度更好。 展开更多
关键词 变分模态分解 改进金豺算法 双向长短期记忆 组合模型 短期负荷预测
下载PDF
Prophet-LSTM组合模型在运输航空征候预测中的应用 被引量:1
4
作者 杜红兵 邢梦柯 赵德超 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1878-1885,共8页
为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分... 为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分;其次,利用长短期记忆网络(Long Short-Term Memory,LSTM)建模,获取运输航空征候万时率的非线性部分;最后,利用方差倒数法建立Prophet-LSTM组合模型,使用建立的组合模型对2021年1—12月运输航空征候万时率进行预测,将预测结果与实际值进行对比验证。结果表明,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别为0.0973、16.1285%、0.1287。相较于已有的自回归移动平均(Auto Regression Integrated Moving Average,ARIMA)+反向传播神经网络(Back Propagation Neural Network,BPNN)组合模型和GM(1,1)+ARIMA+LSTM组合模型,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别减小了0.0259、10.4874百分点、0.0143和0.0128、2.0599百分点、0.0086,验证了Prophet-LSTM组合模型的预测精度更高,性能更优良。 展开更多
关键词 安全社会工程 运输航空征候 Prophet模型 长短期记忆网络(LSTM)模型 组合预测模型
下载PDF
基于CNN-LSTM电力消耗预测模型及系统开发
5
作者 龚立雄 钞寅康 +1 位作者 黄霄 陈佳霖 《计算机仿真》 2024年第8期77-83,共7页
有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网... 有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网络(convolutional neuralnetwork,CNN)与长期短期记忆循环神经网络(long short-term memory network,LSTM)相结合的混合多隐层CNN-LSTM电力能耗预测模型。首先,通过设定最小目标函数作为优化目标,Adam优化算法更新神经网络的权重,并对网络层和批大小进行自适应调优以确定最佳层数和批大小。其次,构建混合多隐层模型并进行隐层组合优化与讨论,确定最佳时间维度的参数,进行时间维度的特征学习进而预测下一时间序列的耗电量。然后以某公司的电力负荷数据为例进行验证,并与LSTM、CNN、RNN等模型的预测结果分析比较。结果表明上述混合多隐层模型预测准确度达98.94%,平均绝对误差(MAE)达到0.0066,均优于其他相关模型,证明以上混合预测模型在电力负荷预测精度方面具有更好的性能。基于上述理论,开发了能耗监控决策系统,实现设备状态实时监控和能耗智能预测功能,为解决传统制造业能耗需求不精确和能源库存浪费问题提供参考和指导。 展开更多
关键词 电力负荷预测 卷积神经网络 长短期记忆神经网络 混合多隐层组合模型
下载PDF
基于SARIMA‑LSTM模型的航空旅客运输市场需求分析与预测
6
作者 田勇 董斌 +3 位作者 于楠 孙梦圆 李千千 郭梁 《指挥信息系统与技术》 2024年第5期1-8,共8页
市场需求预测是航空公司开展生产活动的前提,科学合理的预测结果能为航空公司降低成本、提高效益。首先,选取影响航空旅客运输市场需求的因素,并对其进行相关性分析;其次,采用季节性差分自回归移动平均(SARIMA)模型和长短期记忆(LSTM)... 市场需求预测是航空公司开展生产活动的前提,科学合理的预测结果能为航空公司降低成本、提高效益。首先,选取影响航空旅客运输市场需求的因素,并对其进行相关性分析;其次,采用季节性差分自回归移动平均(SARIMA)模型和长短期记忆(LSTM)网络模型,对航空旅客运输市场需求量进行特征分析,构建了基于SARIMA模型、LSTM网络模型的组合预测(SARIMA⁃LSTM)模型,提高市场需求时间序列预测的精度;最后,以北京市航空运输市场为例,分析结果显示,SARIMA⁃LSTM组合模型的预测准确性高于单一模型,对于市场需求的预测准确率较高。 展开更多
关键词 季节性差分自回归移动平均(SARIMA)模型 长短期记忆(LSTM)网络模型 SARIMA⁃LSTM组合模型 需求预测
下载PDF
基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测 被引量:1
7
作者 邱文智 张文煜 +2 位作者 郭振海 赵晶 马可可 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期73-82,共10页
针对风速的波动性和随机性等特点,提出一种基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测方法。该方法的基本思路是构造基于变分模态分解、样本熵和奇异谱分析的二次分解的方法,将原始风速序列分解为不同的子序列,并对这些... 针对风速的波动性和随机性等特点,提出一种基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测方法。该方法的基本思路是构造基于变分模态分解、样本熵和奇异谱分析的二次分解的方法,将原始风速序列分解为不同的子序列,并对这些子序列分别建立预测模型,最后重构。对变分模态分解的子序列建立基于长短时记忆网络的深度学习模型预测,而残差序列进行二次分解后的子序列建立乌鸦搜索算法优化的组合预测模型预测。最后,对子序列进行重构并得到最终的预测结果。使用实际的风速观测资料开展模拟实验,结果表明:在3个风电场中,所提模型与其他模型相比平均相对误差分别提升了30.07%、37.56%和37.40%,验证了混合模型在超短期风速预测中的有效性和稳定性,以及在不同数据集上的泛化性能。 展开更多
关键词 风速 预测 长短时记忆 二次分解 乌鸦搜索算法 组合预测模型
下载PDF
基于SVM-STL-LSTM的区域短期电力负荷预测研究 被引量:3
8
作者 王晨 李又轩 +1 位作者 吴其琦 邬蓉蓉 《水电能源科学》 北大核心 2024年第4期215-218,共4页
针对区域电力负荷的时间序列数据随机性强、预测精度低及单一模型的数据特征提取能力差等问题,提出了一种支持向量机(SVM)、STL时序分解法、长短期记忆神经网络(LSTM)组合的电力负荷预测模型。该模型利用SVM对时间序列的电力负荷数据进... 针对区域电力负荷的时间序列数据随机性强、预测精度低及单一模型的数据特征提取能力差等问题,提出了一种支持向量机(SVM)、STL时序分解法、长短期记忆神经网络(LSTM)组合的电力负荷预测模型。该模型利用SVM对时间序列的电力负荷数据进行初始预测,并通过STL时序分解法对残差序列进行时序分解,从而提高残差序列的稳定性,减小其随机性,最后用LSTM对SVM的预测误差进行修正。试验结果证明,该方法利用误差修正可有效处理随机性强的数据,有利于预测结果的稳定性,提高预测精度。 展开更多
关键词 组合模型 支持向量机 STL时序分解 长短期记忆网络 短期预测 误差修正
下载PDF
自适应密度聚类组合数据清洗的LSTM风电功率预测
9
作者 潘鹏程 刘晖 王仁明 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期59-66,共8页
风电机运行产生的海量数据中包含大量不同运行情况下造成的异常值,这些数据会对风电功率预测等方面产生影响。为提高风电功率的预测精度,首先,通过建立自适应基于密度的聚类算法与K-均值聚类算法组合数据清洗算法删筛异常值;然后,建立... 风电机运行产生的海量数据中包含大量不同运行情况下造成的异常值,这些数据会对风电功率预测等方面产生影响。为提高风电功率的预测精度,首先,通过建立自适应基于密度的聚类算法与K-均值聚类算法组合数据清洗算法删筛异常值;然后,建立随机森林模型填补缺失值保证数据的完整性;最后,利用长短期记忆神经网络结合气象信息建立风电功率预测模型,并对某风电场实测数据进行风电功率短期预测。研究结果表明,所述方法清洗效率高,预测准确度均高于其他模型,具有良好的预测性能。 展开更多
关键词 组合数据清洗 风电功率预测 长短期记忆 短期预测
下载PDF
基于相似日选取和数据重构的短期光伏功率组合预测方法
10
作者 陈庆斌 杨耿煌 +2 位作者 耿丽清 苏娟 孙京生 《中国电力》 CSCD 北大核心 2024年第12期71-81,共11页
针对光伏功率随机性较强等问题,提出了一种基于相似日选取和数据重构的短期光伏功率组合预测方法。首先,利用核模糊C均值算法对光伏功率进行聚类分析,通过最大信息系数提取主要影响特征;其次,结合合作博弈思想计算预测日和历史日的综合... 针对光伏功率随机性较强等问题,提出了一种基于相似日选取和数据重构的短期光伏功率组合预测方法。首先,利用核模糊C均值算法对光伏功率进行聚类分析,通过最大信息系数提取主要影响特征;其次,结合合作博弈思想计算预测日和历史日的综合相关系数,挑选相关性较强的历史日构建训练集;然后,利用变分模态分解将光伏功率分解为若干子序列,计算排列熵值并重构为趋势项、低频项和高频项;最后,对趋势项和低频项采用长短期记忆神经网络进行预测,对高频项采用卷积神经网络-双向长短期记忆神经网络-注意力机制模型进行预测,将结果叠加得到最终预测结果。经实例验证,在不同天气条件下,所提模型整体预测误差最小,可有效提高预测精度。 展开更多
关键词 光伏功率 相似日 变分模态分解 双向长短期记忆神经网络 组合预测
下载PDF
42CrMo钢精密切削的刀具磨损量预测研究
11
作者 成钢 唐昆 +4 位作者 刘庞中 刘子聪 袁剑平 胡永乐 毛聪 《工具技术》 北大核心 2024年第3期138-143,共6页
针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积... 针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积核等进行优化,结合CNN网络特征提取能力强、LSTM网络具备记忆能力的特点,对实际加工实验的刀具磨损量进行预测,并通过误差评价指标分析,与CNN、LSTM、BP等单一模型以及PSO-GRNN组合模型进行预测效果对比研究。研究结果表明,本文构建的组合预测模型相对于单一预测模型,其预测值与真实值吻合程度更高;相对于PSO-GRNN组合模型,三种误差评价指标的误差值至少降低了27%,其泛化性和稳定性较好,预测精度与非线性拟合能力更强。 展开更多
关键词 刀具磨损量 组合预测模型 量子粒子群算法优化 卷积神经网络 长短期神经网络
下载PDF
长短桩组合支护在深厚软土基坑中的应用研究 被引量:2
12
作者 郑金伙 沈铭龙 刘阳辉 《水文地质工程地质》 CSCD 北大核心 2024年第1期102-110,共9页
基坑的支护桩通常采用等桩长布置,而在深厚软土地区的基坑工程中,围护桩需要嵌入软土以下的好土,所以桩长较长,等桩长布置的情况下经济性较差。为了研究部分围护桩嵌入好土的长短桩组合支护在深厚软土基坑中的作用及表现,采用现行设计... 基坑的支护桩通常采用等桩长布置,而在深厚软土地区的基坑工程中,围护桩需要嵌入软土以下的好土,所以桩长较长,等桩长布置的情况下经济性较差。为了研究部分围护桩嵌入好土的长短桩组合支护在深厚软土基坑中的作用及表现,采用现行设计方法计算全长桩支护和全短桩支护情况下围护桩的结构内力和变形,由此估计采用长短桩组合支护情况下围护桩的变形应介于全长桩支护和全短桩支护之间;进一步通过三维数值模拟对不同长度的长短桩组合支护进行对比分析,确定了合适的短桩桩长,然后将分析结果用于指导实际项目设计并对项目展开监测。研究表明:(1)长短桩组合支护的短桩桩长可截取至全长桩支护条件下围护桩弯矩计算的第二个反弯点,实现短桩与长桩共同受力、协调变形;(2)论文中给出的基于现行设计计算软件的长短桩组合支护设计计算方法是可行的;(3)长短桩组合支护设计方法可有效节约工程造价。研究成果可为深厚软土基坑工程提供参考。 展开更多
关键词 长短桩组合支护 软土基坑 数值模拟 基坑监测
下载PDF
基于LSTM人工神经网络的电力系统负荷预测方法 被引量:6
13
作者 陈胜 刘鹏飞 +1 位作者 王平 马建伟 《沈阳工业大学学报》 CAS 北大核心 2024年第1期66-71,共6页
针对电力市场环境下短期电力系统负荷预测准确性较低的问题,提出了一种基于LSTM人工神经网络的组合预测模型。分析了LSTM神经网络和其变体GRU神经网络在进行负荷预测时学习时序特征的独特优势,并以卷积神经网络作为负荷数据的特征提取层... 针对电力市场环境下短期电力系统负荷预测准确性较低的问题,提出了一种基于LSTM人工神经网络的组合预测模型。分析了LSTM神经网络和其变体GRU神经网络在进行负荷预测时学习时序特征的独特优势,并以卷积神经网络作为负荷数据的特征提取层,结合GRU网络构建了组合模型,通过建立残差预测模型对结果进行修正。仿真结果表明,具有记忆功能的神经网络预测效果要优于ANN和SVM模型,且所提出残差预测模型的负荷预测平均相对误差约为1.79%,其准确性高于单一算法的负荷预测模型。 展开更多
关键词 负荷预测 人工神经网络 长短期记忆 卷积神经网络 平均相对误差 残差修正 特征提取 组合模型
下载PDF
一种混合LSTM-SAM的居民电力负荷预测模型 被引量:2
14
作者 庞伟林 关兆雄 李沐栩 《人工智能科学与工程》 CAS 北大核心 2024年第2期40-49,共10页
针对目前居民电力负荷预测存在可预测性较差的问题,提出了一种混合LSTM-SAM的居民电力负荷预测模型。首先,使用两阶段特征提取方法来处理每个用户的数据,提高了输入数据特征提取的质量;然后,使用基于池化的数据组合方法,将来自互连用户... 针对目前居民电力负荷预测存在可预测性较差的问题,提出了一种混合LSTM-SAM的居民电力负荷预测模型。首先,使用两阶段特征提取方法来处理每个用户的数据,提高了输入数据特征提取的质量;然后,使用基于池化的数据组合方法,将来自互连用户的数据与来自目标用户的数据合并,增加了数据多样性和数据量,减少了数据和模型之间复杂度的相对差异,缓解过拟合问题;最后,将LSTM和SAM相结合,提出了一个具有两个输入通道的混合LSTM-SAM模型,提高了复杂输入下负荷预测的准确性。实验阶段,与ARIMA,SVR,ANN和LSTM进行比较,所提模型的总体性最优。实验结果证明了所提出的负荷预测方法的有效性及实用性,该模型可为居民电力负荷预测的发展提供一定借鉴作用。 展开更多
关键词 电力系统 负荷预测 数据组合 特征提取 自注意机制 长短期记忆
下载PDF
基于ConvLSTM-LSTM的短期负荷预测方法
15
作者 随春光 张玲华 《电子设计工程》 2024年第10期54-58,共5页
长短时记忆(LSTM)网络和结合卷积神经网络(CNN)的CNN-LSTM预测模型由于其网络模型本身的缺陷,限制了预测精度的提高。针对以上问题,提出了一种结合卷积长短时记忆(ConvL⁃STM)网络的ConvLSTM-LSTM负荷预测模型。利用ConvLSTM网络充分提... 长短时记忆(LSTM)网络和结合卷积神经网络(CNN)的CNN-LSTM预测模型由于其网络模型本身的缺陷,限制了预测精度的提高。针对以上问题,提出了一种结合卷积长短时记忆(ConvL⁃STM)网络的ConvLSTM-LSTM负荷预测模型。利用ConvLSTM网络充分提取时序特征,将提取到的信息输入到LSTM网络中进行进一步的选择性记忆,并输出预测结果。将该模型与CNN-LSTM网络模型、LSTM网络模型、以及门控循环单元(GRU)网络模型进行了对比,结果显示所构建的Con⁃vLSTM-LSTM模型的预测效果均优于对比模型,在精度评价指标平均绝对百分比误差(MAPE)上,分别减小了1.10%、1.54%、1.91%。 展开更多
关键词 短期负荷预测 长短时记忆网络 卷积长短时记忆网络 组合预测模型 时序预测
下载PDF
基于EEMD-AE-LSTM的生活用电短期负荷预测
16
作者 张洁莹 石元博 《计算机应用与软件》 北大核心 2024年第3期70-74,123,共6页
生活用电负荷随机性高,使用单一的预测模型进行预测会造成预测结果精度不高并且预测时间比较长。建立集合经验模态分解(EEMD)-自动编码器(AE)-长短期记忆网络(LSTM)的组合预测模型用来预测生活用电短期负荷。采用EEMD算法将负荷数据分... 生活用电负荷随机性高,使用单一的预测模型进行预测会造成预测结果精度不高并且预测时间比较长。建立集合经验模态分解(EEMD)-自动编码器(AE)-长短期记忆网络(LSTM)的组合预测模型用来预测生活用电短期负荷。采用EEMD算法将负荷数据分解为有限个本征模态分量(IMF)和一个残差分量,与自动编码器训练得到的特征序列组合,并建立LSTM模型预测线性加权产生最终预测结果。实验结果表明,相对于其他模型,EEMD-AE-LSTM模型的预测精度更高,是一种较为有效的生活用电短期负荷预测方法。 展开更多
关键词 集合经验模态分解 短期负荷预测 自动编码器 长短期记忆网络 组合预测
下载PDF
基于理论驱动和数据驱动的组合跟车模型
17
作者 葛世磊 霍为炜 龚国庆 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第11期43-51,共9页
基于理论驱动的模型虽成功解释了观察到的交通行为,但无法处理多变的驾驶行为信息,导致模型预测能力较差。基于数据驱动的深度学习预测模型能够处理复杂的驾驶信息,但需要大量的驾驶数据进行模型训练。针对2类模型存在的问题,提出一种... 基于理论驱动的模型虽成功解释了观察到的交通行为,但无法处理多变的驾驶行为信息,导致模型预测能力较差。基于数据驱动的深度学习预测模型能够处理复杂的驾驶信息,但需要大量的驾驶数据进行模型训练。针对2类模型存在的问题,提出一种结合模型,将理论驱动模型(OV)与数据驱动模型(PSO-CNN-BiLSTM-Att)相结合,形成组合跟车模型,将IDM模型和PSO-CNN-BiLSTM-Att神经网络的预测结果相结合,这种融合保留了理论驱动模型提供的可控性,同时也利用了数据驱动模型的预测精度。通过NGSIM交通数据,与单独的OV理论驱动模型和PSO-CNN-BiLSTM-Att数据驱动模型相比,组合模型的预测误差显著减少,分别降低了88%和67%。此外,还进行了不同驾驶行为风格模拟,结果表明组合模型可以真实反映跟车行为。 展开更多
关键词 跟车行为 最优速度模型 长短期记忆网络 粒子群优化 组合预测
下载PDF
基于Time2Vec-LSTM-TCN-Attention的天然气负荷组合预测
18
作者 王可睿 邵必林 《南京信息工程大学学报》 CAS 北大核心 2024年第6期801-809,共9页
针对天然气负荷序列的复杂性和非线性,本文提出一种基于Time2Vec-LSTM-TCN-Attention的天然气负荷组合预测模型.首先,采用皮尔逊相关系数进行相关性分析,提取出相关性强的气象特征;其次,引入时间向量嵌入层Time2Vec,将时间序列转换为连... 针对天然气负荷序列的复杂性和非线性,本文提出一种基于Time2Vec-LSTM-TCN-Attention的天然气负荷组合预测模型.首先,采用皮尔逊相关系数进行相关性分析,提取出相关性强的气象特征;其次,引入时间向量嵌入层Time2Vec,将时间序列转换为连续向量空间,提取相应的时间特征,提高了模型对时间序列信息的计算效率;然后,将Time2Vec提取的时间特征、皮尔逊相关系数选取出的气象特征和原始负荷序列输入到长短期记忆网络(LSTM)和时间卷积网络(TCN)中进行负荷预测,充分利用LSTM的长期记忆能力和TCN的局部特征提取能力;最后,将LSTM和TCN通过注意力(Attention)机制组合起来,并根据其重要程度分别赋予不同的权重,得到最终预测结果.实验结果表明,本文所提出的组合预测模型具有更强的适应性和更高的精度. 展开更多
关键词 Time2Vec 注意力 长短期记忆网络 时间卷积网络 组合预测 负荷预测
下载PDF
虚拟电厂供需侧双层协调自适应鲁棒优化调度 被引量:1
19
作者 吕小红 刘维 +1 位作者 刘克恒 蒋婧 《全球能源互联网》 CSCD 北大核心 2024年第4期431-442,共12页
源荷预测是虚拟电厂(virtual power plant,VPP)制定未来调度计划的重要依据。提出一种基于多频组合短期源荷预测的VPP发电侧和用户侧协同优化调度方法。首先对时间序列的负荷数据进行集合经验模态分解(ensemble empirical mode decompos... 源荷预测是虚拟电厂(virtual power plant,VPP)制定未来调度计划的重要依据。提出一种基于多频组合短期源荷预测的VPP发电侧和用户侧协同优化调度方法。首先对时间序列的负荷数据进行集合经验模态分解(ensemble empirical mode decomposition,EEMD),并将其重构为高低2种频率,使用图卷积神经网络(graph convolution network,GCN)和长短期记忆网络(long short-term memory,LSTM)相结合的GCN-LSTM算法进行预测,并将多频模型得出的预测结果聚合形成不确定模糊集合。考虑需求响应,建立VPP双层优化调度模型。上层以用户利益最大化为目标,综合利用需求响应调度作用,基于制定的分时电价优化多类型可控负荷。下层以分布式电源出力成本最小为目标,同时兼顾供需两侧利益,实现VPP内部资源的优化,并运用改进列约生成算法将上述模型分解为主、子问题进行求解。通过算例分析对所构建的模型进行经济性、鲁棒性和有效性验证。 展开更多
关键词 多频组合 源荷预测 虚拟电厂 调度优化 长短时记忆 模态分解
下载PDF
基于EEMD-SE-LSTM 组合模型的开都河日径流模拟研究
20
作者 丁占涛 安杰 +3 位作者 吴国洋 宋昱锋 罗鑫 黄森 《石河子大学学报(自然科学版)》 CAS 北大核心 2024年第3期335-341,共7页
为提高开都河日径流模拟的精度和更科学地进行开都河水资源的管理与规划,在集成经验模态分解(EEMD)的基础上进行样本熵(SE)重构来完成长短期记忆网络(LSTM)组合模型的构建。采用集成经验模态分解提取开都河日径流序列中具有物理含义的信... 为提高开都河日径流模拟的精度和更科学地进行开都河水资源的管理与规划,在集成经验模态分解(EEMD)的基础上进行样本熵(SE)重构来完成长短期记忆网络(LSTM)组合模型的构建。采用集成经验模态分解提取开都河日径流序列中具有物理含义的信息,得到一系列本征模态分量(IMF)及一个趋势项(Res),计算每个分量的样本熵,复杂程度接近的子序列叠加为新序列,建立长短期记忆神经网络模型进行预测,叠加得到最终模拟值。结果表明:EEMD-SE-LSTM组合模型日径流模拟的精度得到提高,其确定系数R2=0.81、纳什效率系数NSE=0.73,均高于LSTM模型的R2=0.73、NSE=0.52和EEMD-LSTM模型的R2=0.64、NSE=0.63;EEMD-SE-LSTM组合模型的日径流模拟准确性更高,其评价指标(R2=0.81、NSE=0.73)高于其他单一模型SVM(R2=0.70、NSE=0.58)。EEMD-SE-LSTM组合模型提高了日径流模拟精度,可以更好地为开都河水资源管理与规划提供科学依据。 展开更多
关键词 集成经验模态分解 样本熵 长短期记忆网络 组合模型 日径流模拟
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部