Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load...Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load of TLP in moving coordinating system. Infinitesimal method is applied to divide columns and pontoons into small parts. Time domain motion equation is solved by Runge-Kutta integration scheme. Jonswap spectrum is simulated in the random wave, current is simulated by linear interpolation, and NPD spectrum is applied as wind spectrum. The Monte Carlo method is used to simulate random waves and fluctuated wind. Coupling dynamic response, change of tendon tension and riser tension in different sea conditions are analyzed by power spectral density (PSD). The influence of approach angle on dynamic response of TLP and tendon tension is compared.展开更多
The effects of different wind input and wave dissipation formulations on the steady Ekman current solution are described. Two formulations are considered: one from the wave modeling(WAM) program proposed by Hasselmann...The effects of different wind input and wave dissipation formulations on the steady Ekman current solution are described. Two formulations are considered: one from the wave modeling(WAM) program proposed by Hasselmann and Komen and the other provided by Tsagareli and Babanin. The solution adopted for our study was presented by Song for the wave-modifi ed Ekman current model that included the Stokes drift, wind input, and wave dissipation with eddy viscosity increasing linearly with depth. Using the Combi spectrum with tail effects, the solutions are calculated using two formulations for wind input and wave dissipation, and compared. Differences in the results are not negligible. Furthermore, the solution presented by Song and Xu for the eddy viscosity formulated using the K-Profi le Parameterization scheme under wind input and wave dissipation given by Tsagareli and Babanin is compared with that obtained for a depth-dependent eddy viscosity. The solutions are further compared with the available well-known observational data. The result indicates that the Tsagareli and Babanin scheme is more suitable for use in the model when capillary waves are included, and the solution calculated using the K-Profi le Parameterization scheme agrees best with observations.展开更多
This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present app...This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present approach,the hydrodynamic parameters were designed based on the Froude similitude criteria.To avoid the cohesive behavior,we scaled the sediment size based on the settling velocity similarity,i.e.,the suspended load similarity.Then,a series of different scale model tests was conducted to obtain the scour depth around the pile in combined waves and currents.The fitting formula of scour depth from the small-scale model tests was used to predict the results of large-scale tests.The accuracy of the present approach was validated by comparing the prediction values with experimental data of large-scale tests.Moreover,the correctness and accuracy of the present approach for foundations with complex shapes,e.g.,the tripod foundation,was further checked.The results indicated that the fitting line from small-scale model tests slightly overestimated the experimental data of large-scale model tests,and the errors can be accepted.In general,the present approach was applied to predict the maximum or equilibrium scour depth of the large-scale model tests around single piles and tripods.展开更多
Based on the mechanism of local scour around vertical large-sized cylinder due to combined action of wave and current,the sour morphology,scour process and the maximum scour depth around the cylinders are studied expe...Based on the mechanism of local scour around vertical large-sized cylinder due to combined action of wave and current,the sour morphology,scour process and the maximum scour depth around the cylinders are studied experimentally.The influence of various ocean environmental parameters on local scour around the cylinder is considered in physical model test.The experimental results indicate that the principal effect factors on the scour in fine-sand seabed are wave height,wavelength,current velocity,ratio of diameter to wavelength and ratio of depth to wavelength when the ratio of cylinder diameter to wavelength is from 0.2 to 0.8.In this paper,dimensional analysis theory is utilized to establish a theoretical equation for forecasting maximum scour depth around large-sized round cylinder base due to the combined action of wave and current.The results computed with the theoretical equation are compared with the experimental results,and found to be in good consistency.The results in this studies can be used to estimate the maximum sour depth around analogous structures.展开更多
Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed...Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.展开更多
In Earth's high-latitude ionosphere, the poleward motion of east–west elongated auroral arcs has been attributed to standing hydromagnetic waves, especially when the auroral arcs appear quasi-periodically with a ...In Earth's high-latitude ionosphere, the poleward motion of east–west elongated auroral arcs has been attributed to standing hydromagnetic waves, especially when the auroral arcs appear quasi-periodically with a recurrence time of a few minutes. The validation of this scenario requires spacecraft observations of ultra-low-frequency hydromagnetic waves in the magnetosphere and simultaneous observations of poleward-moving auroral arcs near the spacecraft footprints. Here we present the first observational evidence from the multi-spacecraft THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission and the conjugated all-sky imager to support the scenario that standing hydromagnetic waves can generate the quasi-periodic appearance of poleward-moving auroral arcs. In this specific event, the observed waves were toroidal branches of the standing hydromagnetic waves, which were excited by a pulse in the solar wind dynamic pressure. Multi-spacecraft measurements from THEMIS also suggest higher wave frequencies at lower L shells (consistent with the distribution of magnetic field line eigenfrequencies), which indicates that the phase difference across latitudes would increase with time. As time proceeds, the enlarged phase difference corresponds to a lower propagation speed of the auroral arcs, which agrees very well with the ground-based optical data.展开更多
The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such a...The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%.展开更多
-Combined refraction and diffraction models in the form of linear parabolic approximation are derived through smallparameter method. More strictly theoretical basis and more accuracy in the models than Lozano's (1...-Combined refraction and diffraction models in the form of linear parabolic approximation are derived through smallparameter method. More strictly theoretical basis and more accuracy in the models than Lozano's (1980) are obtained. Some theoretical defects in Liu's model (1985) with consideration of current are not only found but also eliminated. More strict and accurate models are, therefore, presented in this paper.The calculation results and analysis in applying the models to actual wave field with consideration of bottom friction will be given in the following paper.展开更多
-Drift current induced by wind and waves is investigated with phase-averaged Navier-Stokes equation in which the Reynolds stress is closed by k-ε model. The governing equations are solved by the finite volume method ...-Drift current induced by wind and waves is investigated with phase-averaged Navier-Stokes equation in which the Reynolds stress is closed by k-ε model. The governing equations are solved by the finite volume method in a system of nonorthogonal coordinates which is fitted to the phase-averaged wave surface. The predicted drift current is fairly reasonable and the drag coefficient of sea-surface predicted with the newly developed interface conditions shows good agreement with previous measurements when breaking waves do not exist.展开更多
The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up consid...The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison’s nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin’s method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wave-current.展开更多
The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up consid...The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wavecurrent.展开更多
The development of offshore wind farms has experienced rapid growth during the past decade. In particular, China has the highest number of installations worldwide, but some challenges exist for further development. Co...The development of offshore wind farms has experienced rapid growth during the past decade. In particular, China has the highest number of installations worldwide, but some challenges exist for further development. Consequently, some researchers suggest combining wave energy with offshore wind energy. To fully implement this plan, a comprehensive resource assessment of combined offshore wind and wave energy systems is needed. Investigations of the parameters, such as the spatial and temporal distribution of wind and wave energy, aggregate resource reserves, available technical potential, and total capacity factor, are vital for designing the required wind turbines and wave energy converters. To assist scientific development and governmental decision making, this paper aims to evaluate offshore wind and wave energy resources from a technological perspective. The results show that theoretical offshore wind and wave energy resources are abundant in China's ocean territory, with a potential of approximately 3 TW. Technically, of the three most popular offshore wind turbines, i.e., 6, 8, and 10 MW, 10 MW is overall the most suitable in China. However, of the three wave energy converters, i.e., 120, 250, and 750 kW, 120 kW is the best candidate for Liaoning Province, and 750 kW is the most suitable for the remainder of its region. Overall, the total annual energy production is approximately 7000 TWh.展开更多
When a maintenance and operations ship is berthing,there is a chance the ship may collide into the wind turbine.When these ships collide into wind turbine structures,this can result in significant changes to the found...When a maintenance and operations ship is berthing,there is a chance the ship may collide into the wind turbine.When these ships collide into wind turbine structures,this can result in significant changes to the foundation and structure of the wind turbine.In this paper,the structural load of a 4 MW offshore wind turbine was analyzed during a collision with an operations and maintenance ship.The variations in the wind speeds on hub height,waves,and the sea currents were measured.The dynamic simulation of the wind turbine was carried out using the test data as the input parameters.As a result,the load condition of the turbine without a collision was obtained.Finally,the measured turbine load was compared with the simulation results.This study shows that the collision of the operation and the maintenance ship increases the bending moments at the tower’s bottom and the blade’s roots.展开更多
The current and wind records and the physical parameter structures such as temperature and salinity in the southwestern part of the Caspian Sea adjacent to Anzali Port were investigated from November 2004 up to the en...The current and wind records and the physical parameter structures such as temperature and salinity in the southwestern part of the Caspian Sea adjacent to Anzali Port were investigated from November 2004 up to the end of January 2005. Results show that, despite the existence of relatively weak winds along the coast in the area, the measurements indicate strong long shore currents. However, when heavy wind tension is observed in the area, then strong currents are also present, which - from the perspective of direction – also have good coordination with the wind. The direction of dominated currents was parallel to the coast from the west to the east. In most cases, the flow rate was identical from the surface to the seabed, and in this condition - because the values of the measured temperature points were almost identical-barotropic currents were present. However, in the autumn at some region, a significant difference was observed between the surface currents and subsurface currents due to temperature differences that affected the density and caused the creation of barocilinic currents. Due to the high velocity of currents compared to wind velocity, and the intense slope of the coast and low-frequency movements in the area, we can hypothesize the existence of motions such as Kelvin waves and conclude that the effect of the wind compared to the other factors of the coastal current in the area was weaker.展开更多
Unlike the pier scour in bridge waterways,the local scour at offshore monopile foundations should take into account the effect of wave-current combination.Under the condition of wave-current coexistence,the water-soil...Unlike the pier scour in bridge waterways,the local scour at offshore monopile foundations should take into account the effect of wave-current combination.Under the condition of wave-current coexistence,the water-soil interfacial scouring is usually coupled with the pore-pressure dynamics inside of the seabed.The aforementioned wave/current-pile-soil coupling process was physically modeled with a specially designed flow-structure-soil interaction flume.Experimental results indicate that superimposing a current onto the waves obviously changes the pore-pressure and the flow velocity at the bed around the pile.The concomitance of horseshoe vortex and local scour hole around a monopile proves that the horseshoe vortex is one of the main controlling mechanisms for scouring development under the combined waves and current.Based on similarity analyses,an average-velocity based Froude number(Fra)is proposed to correlate with the equilibrium scour depth(S/D)at offshore monopile foundation in the combined waves and current.An empirical expression for the correlation between S/D and Fra is given for predicting equilibrium scour depth,which may provide a guide for offshore engineering practice.展开更多
The effects of waves on Surface Drag Coefficient (SDC) and surface mixing length were analyzed and discussed by carrying out three-dimensional current modeling for the Bohai Sea in the present work. A threedimension...The effects of waves on Surface Drag Coefficient (SDC) and surface mixing length were analyzed and discussed by carrying out three-dimensional current modeling for the Bohai Sea in the present work. A threedimensional coupled hydrodynamical-ecological model for regional and shelf seas (COHERENS) incorporating the influences of wave-current interactions was coupled with the third-generation wave model swan taking into account time-varying currents. The effects of waves on currents were included in the SDC, surface mixing length and bottom drag coefficient. Firstly, the formulations in Donelan were incorporated into the COHERENS to account for wave-dependent SDC. In order to compare simulation results for the wave-dependent SDC, the simulation for wind-dependent SDC was also carried out. Second, Wave-Induced Surface Mixing Length (described as WISML sometimes in this paper) was incorporated into the COHERENS. Four numerical experiments were conducted to discuss the effects of two kinds of wave processes. Generally, the values of time series of current velocity and water surface elevation given by the simulation with all of the three wave processes have a good agreement with observed data. The existence of WISML changes obviously current vertical profiles and the existence of the wave dependent SDC modifies the current field of both top and bottom layers with the wind-dependent SDC.展开更多
With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years,there is an interest in investigating the technological and economic feasib...With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years,there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines(WTs)with wave energy converters(WECs).In the EU FP7 MARINA Platform project,three floating combined concepts,namely the spar torus combination(STC),the semi-submersible flap combination(SFC)and the oscillating water column(OWC)array with a wind turbine,were selected and studied in detail by numerical and experimental methods.This paper summarizes the numerical modeling and analysis of the two concepts:STC and SFC,the model tests at a 1:50 scale under simultaneous wave and wind excitation,as well as the comparison between the numerical and experimental results.Both operational and survival wind and wave conditions were considered.The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory(for SFC)or simplified thrust force model(for STC)for aerodynamics.Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off(PTO)system for wave energy conversion by pneumatic damper or hydraulic rotary damper.In order to reduce the uncertainty due to scaling,the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison.The comparison shows that the current numerical model can well predict the responses(motions,PTO forces,power production)of the combined concepts for most of the cases.However,the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the torus occurs and this requires further investigation.Moreover,based on a preliminary comparison of the displacement,the PTO system as well as the wind and wave power production,the STC concept will have a lower cost of energy as compared to the SFC concept.However,the cost of energy of either the STC or the SFC concept is higher than that of a pure floating wind turbine with the same floater.展开更多
文摘Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load of TLP in moving coordinating system. Infinitesimal method is applied to divide columns and pontoons into small parts. Time domain motion equation is solved by Runge-Kutta integration scheme. Jonswap spectrum is simulated in the random wave, current is simulated by linear interpolation, and NPD spectrum is applied as wind spectrum. The Monte Carlo method is used to simulate random waves and fluctuated wind. Coupling dynamic response, change of tendon tension and riser tension in different sea conditions are analyzed by power spectral density (PSD). The influence of approach angle on dynamic response of TLP and tendon tension is compared.
基金Supported by the National Natural Science Foundation of China(No.41176016)the National Basic Research Program of China(973 Program)(Nos.2012CB417402,2011CB403501)the Fund for Creative Research Groups by National Natural Science Foundation of China(No.41121064)
文摘The effects of different wind input and wave dissipation formulations on the steady Ekman current solution are described. Two formulations are considered: one from the wave modeling(WAM) program proposed by Hasselmann and Komen and the other provided by Tsagareli and Babanin. The solution adopted for our study was presented by Song for the wave-modifi ed Ekman current model that included the Stokes drift, wind input, and wave dissipation with eddy viscosity increasing linearly with depth. Using the Combi spectrum with tail effects, the solutions are calculated using two formulations for wind input and wave dissipation, and compared. Differences in the results are not negligible. Furthermore, the solution presented by Song and Xu for the eddy viscosity formulated using the K-Profi le Parameterization scheme under wind input and wave dissipation given by Tsagareli and Babanin is compared with that obtained for a depth-dependent eddy viscosity. The solutions are further compared with the available well-known observational data. The result indicates that the Tsagareli and Babanin scheme is more suitable for use in the model when capillary waves are included, and the solution calculated using the K-Profi le Parameterization scheme agrees best with observations.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.202061027)the National Natural Science Foundation of China(No.41572247)。
文摘This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present approach,the hydrodynamic parameters were designed based on the Froude similitude criteria.To avoid the cohesive behavior,we scaled the sediment size based on the settling velocity similarity,i.e.,the suspended load similarity.Then,a series of different scale model tests was conducted to obtain the scour depth around the pile in combined waves and currents.The fitting formula of scour depth from the small-scale model tests was used to predict the results of large-scale tests.The accuracy of the present approach was validated by comparing the prediction values with experimental data of large-scale tests.Moreover,the correctness and accuracy of the present approach for foundations with complex shapes,e.g.,the tripod foundation,was further checked.The results indicated that the fitting line from small-scale model tests slightly overestimated the experimental data of large-scale model tests,and the errors can be accepted.In general,the present approach was applied to predict the maximum or equilibrium scour depth of the large-scale model tests around single piles and tripods.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50409015)
文摘Based on the mechanism of local scour around vertical large-sized cylinder due to combined action of wave and current,the sour morphology,scour process and the maximum scour depth around the cylinders are studied experimentally.The influence of various ocean environmental parameters on local scour around the cylinder is considered in physical model test.The experimental results indicate that the principal effect factors on the scour in fine-sand seabed are wave height,wavelength,current velocity,ratio of diameter to wavelength and ratio of depth to wavelength when the ratio of cylinder diameter to wavelength is from 0.2 to 0.8.In this paper,dimensional analysis theory is utilized to establish a theoretical equation for forecasting maximum scour depth around large-sized round cylinder base due to the combined action of wave and current.The results computed with the theoretical equation are compared with the experimental results,and found to be in good consistency.The results in this studies can be used to estimate the maximum sour depth around analogous structures.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046205)
文摘Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.
基金supported by the National Natural Science Foundation of China (grant numbers 41774168 and 41421003)
文摘In Earth's high-latitude ionosphere, the poleward motion of east–west elongated auroral arcs has been attributed to standing hydromagnetic waves, especially when the auroral arcs appear quasi-periodically with a recurrence time of a few minutes. The validation of this scenario requires spacecraft observations of ultra-low-frequency hydromagnetic waves in the magnetosphere and simultaneous observations of poleward-moving auroral arcs near the spacecraft footprints. Here we present the first observational evidence from the multi-spacecraft THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission and the conjugated all-sky imager to support the scenario that standing hydromagnetic waves can generate the quasi-periodic appearance of poleward-moving auroral arcs. In this specific event, the observed waves were toroidal branches of the standing hydromagnetic waves, which were excited by a pulse in the solar wind dynamic pressure. Multi-spacecraft measurements from THEMIS also suggest higher wave frequencies at lower L shells (consistent with the distribution of magnetic field line eigenfrequencies), which indicates that the phase difference across latitudes would increase with time. As time proceeds, the enlarged phase difference corresponds to a lower propagation speed of the auroral arcs, which agrees very well with the ground-based optical data.
基金jointly funded by the National Key Research and Development Projects(No.2017YFE0132000)the National Natural Science Foundation of China(Nos.5211101879,52078251,52108456)the Natural Science Foundation of Jiangsu Province(Nos.BK20211518,BK20210309)
文摘The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%.
基金Project supported by the State Natural Science Fund
文摘-Combined refraction and diffraction models in the form of linear parabolic approximation are derived through smallparameter method. More strictly theoretical basis and more accuracy in the models than Lozano's (1980) are obtained. Some theoretical defects in Liu's model (1985) with consideration of current are not only found but also eliminated. More strict and accurate models are, therefore, presented in this paper.The calculation results and analysis in applying the models to actual wave field with consideration of bottom friction will be given in the following paper.
文摘-Drift current induced by wind and waves is investigated with phase-averaged Navier-Stokes equation in which the Reynolds stress is closed by k-ε model. The governing equations are solved by the finite volume method in a system of nonorthogonal coordinates which is fitted to the phase-averaged wave surface. The predicted drift current is fairly reasonable and the drag coefficient of sea-surface predicted with the newly developed interface conditions shows good agreement with previous measurements when breaking waves do not exist.
基金Project supported by the National Natural Science Foundation of China (No.50279026) andthe National985Engineering Project in China
文摘The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison’s nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin’s method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wave-current.
文摘The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wavecurrent.
基金provided by the National Marine Renewable Energy Programs of Chinasupported by the National Key R&D Program of China(Grant No.2017YFE0132000)the National Natural Science Foundation of China(Grant Nos.52078251 and 42276228)。
文摘The development of offshore wind farms has experienced rapid growth during the past decade. In particular, China has the highest number of installations worldwide, but some challenges exist for further development. Consequently, some researchers suggest combining wave energy with offshore wind energy. To fully implement this plan, a comprehensive resource assessment of combined offshore wind and wave energy systems is needed. Investigations of the parameters, such as the spatial and temporal distribution of wind and wave energy, aggregate resource reserves, available technical potential, and total capacity factor, are vital for designing the required wind turbines and wave energy converters. To assist scientific development and governmental decision making, this paper aims to evaluate offshore wind and wave energy resources from a technological perspective. The results show that theoretical offshore wind and wave energy resources are abundant in China's ocean territory, with a potential of approximately 3 TW. Technically, of the three most popular offshore wind turbines, i.e., 6, 8, and 10 MW, 10 MW is overall the most suitable in China. However, of the three wave energy converters, i.e., 120, 250, and 750 kW, 120 kW is the best candidate for Liaoning Province, and 750 kW is the most suitable for the remainder of its region. Overall, the total annual energy production is approximately 7000 TWh.
基金supported by the National Key Research and Development Program of China(2018YFB0904005)。
文摘When a maintenance and operations ship is berthing,there is a chance the ship may collide into the wind turbine.When these ships collide into wind turbine structures,this can result in significant changes to the foundation and structure of the wind turbine.In this paper,the structural load of a 4 MW offshore wind turbine was analyzed during a collision with an operations and maintenance ship.The variations in the wind speeds on hub height,waves,and the sea currents were measured.The dynamic simulation of the wind turbine was carried out using the test data as the input parameters.As a result,the load condition of the turbine without a collision was obtained.Finally,the measured turbine load was compared with the simulation results.This study shows that the collision of the operation and the maintenance ship increases the bending moments at the tower’s bottom and the blade’s roots.
文摘The current and wind records and the physical parameter structures such as temperature and salinity in the southwestern part of the Caspian Sea adjacent to Anzali Port were investigated from November 2004 up to the end of January 2005. Results show that, despite the existence of relatively weak winds along the coast in the area, the measurements indicate strong long shore currents. However, when heavy wind tension is observed in the area, then strong currents are also present, which - from the perspective of direction – also have good coordination with the wind. The direction of dominated currents was parallel to the coast from the west to the east. In most cases, the flow rate was identical from the surface to the seabed, and in this condition - because the values of the measured temperature points were almost identical-barotropic currents were present. However, in the autumn at some region, a significant difference was observed between the surface currents and subsurface currents due to temperature differences that affected the density and caused the creation of barocilinic currents. Due to the high velocity of currents compared to wind velocity, and the intense slope of the coast and low-frequency movements in the area, we can hypothesize the existence of motions such as Kelvin waves and conclude that the effect of the wind compared to the other factors of the coastal current in the area was weaker.
基金supported by the National Natural Science Foundation of China(Grant Nos.1123201210872198)the National Basic Research Program of China("973"Project)(Grant No.2014CB046204)
文摘Unlike the pier scour in bridge waterways,the local scour at offshore monopile foundations should take into account the effect of wave-current combination.Under the condition of wave-current coexistence,the water-soil interfacial scouring is usually coupled with the pore-pressure dynamics inside of the seabed.The aforementioned wave/current-pile-soil coupling process was physically modeled with a specially designed flow-structure-soil interaction flume.Experimental results indicate that superimposing a current onto the waves obviously changes the pore-pressure and the flow velocity at the bed around the pile.The concomitance of horseshoe vortex and local scour hole around a monopile proves that the horseshoe vortex is one of the main controlling mechanisms for scouring development under the combined waves and current.Based on similarity analyses,an average-velocity based Froude number(Fra)is proposed to correlate with the equilibrium scour depth(S/D)at offshore monopile foundation in the combined waves and current.An empirical expression for the correlation between S/D and Fra is given for predicting equilibrium scour depth,which may provide a guide for offshore engineering practice.
基金Project supported by 973 Project (Grant No: 2002CB412408) and the Natural Science Foundation of Qingdao (Grant No: 03-jr-15).
文摘The effects of waves on Surface Drag Coefficient (SDC) and surface mixing length were analyzed and discussed by carrying out three-dimensional current modeling for the Bohai Sea in the present work. A threedimensional coupled hydrodynamical-ecological model for regional and shelf seas (COHERENS) incorporating the influences of wave-current interactions was coupled with the third-generation wave model swan taking into account time-varying currents. The effects of waves on currents were included in the SDC, surface mixing length and bottom drag coefficient. Firstly, the formulations in Donelan were incorporated into the COHERENS to account for wave-dependent SDC. In order to compare simulation results for the wave-dependent SDC, the simulation for wind-dependent SDC was also carried out. Second, Wave-Induced Surface Mixing Length (described as WISML sometimes in this paper) was incorporated into the COHERENS. Four numerical experiments were conducted to discuss the effects of two kinds of wave processes. Generally, the values of time series of current velocity and water surface elevation given by the simulation with all of the three wave processes have a good agreement with observed data. The existence of WISML changes obviously current vertical profiles and the existence of the wave dependent SDC modifies the current field of both top and bottom layers with the wind-dependent SDC.
文摘With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years,there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines(WTs)with wave energy converters(WECs).In the EU FP7 MARINA Platform project,three floating combined concepts,namely the spar torus combination(STC),the semi-submersible flap combination(SFC)and the oscillating water column(OWC)array with a wind turbine,were selected and studied in detail by numerical and experimental methods.This paper summarizes the numerical modeling and analysis of the two concepts:STC and SFC,the model tests at a 1:50 scale under simultaneous wave and wind excitation,as well as the comparison between the numerical and experimental results.Both operational and survival wind and wave conditions were considered.The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory(for SFC)or simplified thrust force model(for STC)for aerodynamics.Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off(PTO)system for wave energy conversion by pneumatic damper or hydraulic rotary damper.In order to reduce the uncertainty due to scaling,the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison.The comparison shows that the current numerical model can well predict the responses(motions,PTO forces,power production)of the combined concepts for most of the cases.However,the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the torus occurs and this requires further investigation.Moreover,based on a preliminary comparison of the displacement,the PTO system as well as the wind and wave power production,the STC concept will have a lower cost of energy as compared to the SFC concept.However,the cost of energy of either the STC or the SFC concept is higher than that of a pure floating wind turbine with the same floater.