We proposed a novel wavelength-spread compression technique for spectral beam combining of a diode laser array. A reflector, which is parallel to the grating, is introduced to achieve a double pass with a single grati...We proposed a novel wavelength-spread compression technique for spectral beam combining of a diode laser array. A reflector, which is parallel to the grating, is introduced to achieve a double pass with a single grating.This facilitated the reduction of the wavelength spread by half and doubled the number of combined elements in the gain range of the diode laser. We achieved a power of 26.1 W under continuous wave operation using a19 element single bar with a wavelength spread of 6.3 nm, which is nearly half of the original wavelength spread of 14.2 nm, demonstrating the double-compressed spectrum capability of this structure. The spectral beam combining efficiency was 63.7%. The grating efficiency and reflector reflectance were both over 95%; hence, the efficiency loss of the double-pass grating with a reflector is acceptable. In contrast to double-grating methods,the proposed method introduces a reflector that efficiently uses the single grating and shows significant potential for a more efficient spectral beam combining of diode laser arrays.展开更多
基金the support of the Shanghai Science and Technology Committee(Nos.15JC1403500 and 16DZ2290102)the Chinese Academy of Sciences(No.QYZDJ-SSW-JSC014)
文摘We proposed a novel wavelength-spread compression technique for spectral beam combining of a diode laser array. A reflector, which is parallel to the grating, is introduced to achieve a double pass with a single grating.This facilitated the reduction of the wavelength spread by half and doubled the number of combined elements in the gain range of the diode laser. We achieved a power of 26.1 W under continuous wave operation using a19 element single bar with a wavelength spread of 6.3 nm, which is nearly half of the original wavelength spread of 14.2 nm, demonstrating the double-compressed spectrum capability of this structure. The spectral beam combining efficiency was 63.7%. The grating efficiency and reflector reflectance were both over 95%; hence, the efficiency loss of the double-pass grating with a reflector is acceptable. In contrast to double-grating methods,the proposed method introduces a reflector that efficiently uses the single grating and shows significant potential for a more efficient spectral beam combining of diode laser arrays.