With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp...With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.展开更多
Zhongshan Bridge is a kind of steel arch bridge with a particular space-combined structure. The rationality of design, accuracy of theoretical calculation and reliability of transportation were studied. Its design, FE...Zhongshan Bridge is a kind of steel arch bridge with a particular space-combined structure. The rationality of design, accuracy of theoretical calculation and reliability of transportation were studied. Its design, FEM calculation of stresses and strains, and model test were introduced in detail. The theoretical analysis and model test verified that the design was reliable and safe. The simulated stresses, rigidity and stability, which are based on the selected loading system and cross-section geometry, satisfy the related design standards. Some of the issues that need to be considered in the real bridge construction were also discussed.展开更多
The vibrations and noises of elevated railway structures have been cause for concern due to their effects on the environment and the people living near elevated lines.In this paper,the main structural features of some...The vibrations and noises of elevated railway structures have been cause for concern due to their effects on the environment and the people living near elevated lines.In this paper,the main structural features of some new elevated bridges and station hall were introduced.The generation mechanism of vibrations and noise of elevated structures induced by trains were investigated.The noise induced by different types of elevated bridges,their influences on the environment and the theoretical method for the analysis of structure borne noise was analyzed.Finally,several field measurements on train induced noises at the platforms of elevated subway stations and bridges were presented.展开更多
文摘With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.
文摘Zhongshan Bridge is a kind of steel arch bridge with a particular space-combined structure. The rationality of design, accuracy of theoretical calculation and reliability of transportation were studied. Its design, FEM calculation of stresses and strains, and model test were introduced in detail. The theoretical analysis and model test verified that the design was reliable and safe. The simulated stresses, rigidity and stability, which are based on the selected loading system and cross-section geometry, satisfy the related design standards. Some of the issues that need to be considered in the real bridge construction were also discussed.
基金supported by the Key Project of the Natural Science Foundation of China(Grant No.50538010)the Natural Science Foundation of Beijing(Grant No.8082021)the Flander(Belgium)-China Bilateral Project(No.BIL07/07).
文摘The vibrations and noises of elevated railway structures have been cause for concern due to their effects on the environment and the people living near elevated lines.In this paper,the main structural features of some new elevated bridges and station hall were introduced.The generation mechanism of vibrations and noise of elevated structures induced by trains were investigated.The noise induced by different types of elevated bridges,their influences on the environment and the theoretical method for the analysis of structure borne noise was analyzed.Finally,several field measurements on train induced noises at the platforms of elevated subway stations and bridges were presented.