Constant composition codes(CCCs)are a new generalization of binary constant weight codes and have attracted recent interest due to their numerous applications. In this paper, a new combinatorial approach to the constr...Constant composition codes(CCCs)are a new generalization of binary constant weight codes and have attracted recent interest due to their numerous applications. In this paper, a new combinatorial approach to the construction of CCCs is proposed, and used to establish new optimal CCCs.展开更多
Combinatorial enzyme technology was applied for the conversion of wheat insoluble arabinoxylan to oligosaccharide structural variants. The digestive products were fractionated by Bio-Gel P4 column and screened for bio...Combinatorial enzyme technology was applied for the conversion of wheat insoluble arabinoxylan to oligosaccharide structural variants. The digestive products were fractionated by Bio-Gel P4 column and screened for bioactivity. One fraction pool was observed to exhibit antimicrobial property resulting in the suppression of cell growth of the test organism ATCC 8739 E. coli. It has a MIC value of 1.5% (w/v, 35°C, 20 hr) and could be useful as a new source of prebiotics or preservatives. The present results further confirm the science and useful application of combinatorial enzyme approach.展开更多
基金the National Natural Foundation of China (Grant Nos. 10671140, 10626038)
文摘Constant composition codes(CCCs)are a new generalization of binary constant weight codes and have attracted recent interest due to their numerous applications. In this paper, a new combinatorial approach to the construction of CCCs is proposed, and used to establish new optimal CCCs.
文摘Combinatorial enzyme technology was applied for the conversion of wheat insoluble arabinoxylan to oligosaccharide structural variants. The digestive products were fractionated by Bio-Gel P4 column and screened for bioactivity. One fraction pool was observed to exhibit antimicrobial property resulting in the suppression of cell growth of the test organism ATCC 8739 E. coli. It has a MIC value of 1.5% (w/v, 35°C, 20 hr) and could be useful as a new source of prebiotics or preservatives. The present results further confirm the science and useful application of combinatorial enzyme approach.