Based on bipolar dynamic logic (BDL) and bipolar quantum linear algebra (BQLA) this work introduces bipolar quantum logic gates and quantum cellular combinatorics with a logical interpretation to quantum entanglement....Based on bipolar dynamic logic (BDL) and bipolar quantum linear algebra (BQLA) this work introduces bipolar quantum logic gates and quantum cellular combinatorics with a logical interpretation to quantum entanglement. It is shown that: 1) BDL leads to logically definable causality and generic particle-antiparticle bipolar quantum entanglement;2) BQLA makes composite atom-atom bipolar quantum entanglement reachable. Certain logical equivalence is identified between the new interpretation and established ones. A logical reversibility theorem is presented for ubiquitous quantum computing. Physical reversibility is briefly discussed. It is shown that a bipolar matrix can be either a modular generalization of a quantum logic gate matrix or a cellular connectivity matrix. Based on this observation, a scalable graph theory of quantum cellular combinatorics is proposed. It is contended that this work constitutes an equilibrium-based logical extension to Bohr’s particle-wave complementarity principle, Bohm’s wave function and Bell’s theorem. In the meantime, it is suggested that the result may also serve as a resolution, rather than a falsification, to the EPR paradox and, therefore, a equilibrium-based logical unification of local realism and quantum non-locality.展开更多
Using the coherent state representation we derive some new operator identities and study some mathematical relations in comblnatorics. The technique of integral within an ordered product (IWOP) of operators plays an...Using the coherent state representation we derive some new operator identities and study some mathematical relations in comblnatorics. The technique of integral within an ordered product (IWOP) of operators plays an essential role in realizing our goal.展开更多
Partition-and-Recur (PAR) method is a simple and useful formal method. It can be used to design and testify algo-rithmic programs. In this paper, we propose that PAR method is an effective formal method on solving com...Partition-and-Recur (PAR) method is a simple and useful formal method. It can be used to design and testify algo-rithmic programs. In this paper, we propose that PAR method is an effective formal method on solving combinatorics problems. Furthermore, we formally derive combinatorics problems by PAR method, which cannot only simplify the process of algorithmic program's designing, but also improve its automatization, standardization and correctness. We develop algorithms for two typical combinatorics problems, the number of string scheme and the number of error per-mutation scheme. Lastly, we obtain accurate C++ programs which are transformed by automatic transforming system of PAR platform.展开更多
文摘Based on bipolar dynamic logic (BDL) and bipolar quantum linear algebra (BQLA) this work introduces bipolar quantum logic gates and quantum cellular combinatorics with a logical interpretation to quantum entanglement. It is shown that: 1) BDL leads to logically definable causality and generic particle-antiparticle bipolar quantum entanglement;2) BQLA makes composite atom-atom bipolar quantum entanglement reachable. Certain logical equivalence is identified between the new interpretation and established ones. A logical reversibility theorem is presented for ubiquitous quantum computing. Physical reversibility is briefly discussed. It is shown that a bipolar matrix can be either a modular generalization of a quantum logic gate matrix or a cellular connectivity matrix. Based on this observation, a scalable graph theory of quantum cellular combinatorics is proposed. It is contended that this work constitutes an equilibrium-based logical extension to Bohr’s particle-wave complementarity principle, Bohm’s wave function and Bell’s theorem. In the meantime, it is suggested that the result may also serve as a resolution, rather than a falsification, to the EPR paradox and, therefore, a equilibrium-based logical unification of local realism and quantum non-locality.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056
文摘Using the coherent state representation we derive some new operator identities and study some mathematical relations in comblnatorics. The technique of integral within an ordered product (IWOP) of operators plays an essential role in realizing our goal.
文摘Partition-and-Recur (PAR) method is a simple and useful formal method. It can be used to design and testify algo-rithmic programs. In this paper, we propose that PAR method is an effective formal method on solving combinatorics problems. Furthermore, we formally derive combinatorics problems by PAR method, which cannot only simplify the process of algorithmic program's designing, but also improve its automatization, standardization and correctness. We develop algorithms for two typical combinatorics problems, the number of string scheme and the number of error per-mutation scheme. Lastly, we obtain accurate C++ programs which are transformed by automatic transforming system of PAR platform.