In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defi...In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defined, and a fractional Hamilton principle under this definition is established. The fractional Lagrange equations and the fractional Hamilton canonical equations are derived from the fractional Hamilton principle. A number of special cases are given, showing the universality of our conclusions. At the end of the paper, an example is given to illustrate the application of the results.展开更多
Bifurcation, bistability and solitary waves of the combined KdV and mKdV equation are investigatedsystematically. At first, bifurcation and bistability are analyzed by selecting an integral constant as the bifurcation...Bifurcation, bistability and solitary waves of the combined KdV and mKdV equation are investigatedsystematically. At first, bifurcation and bistability are analyzed by selecting an integral constant as the bifurcationparameter. Then, different conditions expressed in terms of the bifurcation parameter are obtained for the existence ofbreather-like, algebraic, pulse-like solitary waves, and shock waves. All types of the solitary wave and shock wave solutionsare given by direct integration. Finally, an approximate analytic method by employing the interpolation polynomials iscomplete and the theoretical methods are the simplest hitherto.展开更多
In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagran...In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.展开更多
A new (29-1)-dimensional lattice equation is presented based upon the first two members in the hierarchy of the combined Toda lattice and relativistic Toda lattice (TL-RTL) equations in (19991) dimensions. A Dar...A new (29-1)-dimensional lattice equation is presented based upon the first two members in the hierarchy of the combined Toda lattice and relativistic Toda lattice (TL-RTL) equations in (19991) dimensions. A Darboux transformation for the hierarchy of the combined TL-RTL equations is constructed. Solutions of the first two members in the hierarchy of the combined TL-RTL equations, as well as the new (29-1)-dimensional lattice equation are explicitly obtained by the Darboux transformation.展开更多
In this paper the ( G'/G )-expansion method is used to find exact travelling wave solutions for a combined KdV and Schwarzian KdV equation. As a result, multiple travelling wave solutions with arbitrary parameters...In this paper the ( G'/G )-expansion method is used to find exact travelling wave solutions for a combined KdV and Schwarzian KdV equation. As a result, multiple travelling wave solutions with arbitrary parameters are obtained, which are expressed by hyperbolic functions, trigonometric functions and rational functions. When the parameters are taken as special values, the solitary waves are derived from the travelling waves. The (G'/G)-expansion method presents a wider applicability for handling nonlinear wave equations.展开更多
The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave sol...The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave solutions for the (1 + 1)-dimensional combined KdV-mKdV equation by using the novel (G'/G)-expansion method. Consequently, various traveling wave solutions patterns including solitary wave solutions, periodic solutions, and kinks are detected and exhibited.展开更多
With the aid of Mathematica and Wu elimination method,via using a new generalized ansatz and well known Riccati equation,thirty two families of explicit and exact solutions for the generalized combined KdV and mKdV...With the aid of Mathematica and Wu elimination method,via using a new generalized ansatz and well known Riccati equation,thirty two families of explicit and exact solutions for the generalized combined KdV and mKdV equation are obtained,which contain new solitary wave solutions and periodic wave solutions.This approach can also be applied to other nonlinear evolution equations.展开更多
The exact solution for the combined KS and KdV equation is obtained via introducing a simple and effective nonlinear transformations.This method is very concise and primary and can be applied to other unintegrable non...The exact solution for the combined KS and KdV equation is obtained via introducing a simple and effective nonlinear transformations.This method is very concise and primary and can be applied to other unintegrable nonlinear evolution equations.It is common knowledge that the Korteweg de Vries(KdV) equation [1] (1)has been proposed as model equation for the weakly nonlinear long waves which occur in many different physical systems; the Kuramoto-Sivashinsky (KS) equationis one of the simplest nonliaear partial differential equations that exhibit Chaotic behavior frequently encounted in the study of continous media [2-4] . Many interesting mathematical and physical properties of eqs. (1) and (2) have been studied widely. But, in several problems where a lonq wavelength oscilatory instability is found, the noulineai evolution of the perturbations near rriticality is governed by the dispersion modified Kuramoto-Sivashi nsky equation(3)ft is clear that this equation is a combination of the KdV and展开更多
The mechanism of action of ecological factors affecting crop growth and development was complicated. In order to study the relationships between ecological factors and the indexes of yield property equation and determ...The mechanism of action of ecological factors affecting crop growth and development was complicated. In order to study the relationships between ecological factors and the indexes of yield property equation and determine the main ecological factors affecting yield, using 3-yr field experimental results for different yielding spring maize (Zea mays L.) populations and the relative meteorological observation data in Huadian of Jilin Province in China, and analyzing on the base of the yield property equation (MLAI × D × MNAR × HI = EN × GN × GW), the main ecological factors were screened, and further mechanisms of action affecting yield were analyzed. Stepwise regression analysis showed that yield was affected mainly by effective accumulated temperature, daily mean minimum temperature, daily mean maximum temperature in July, the ratios of growth days, and the sunshine hour before and after silking. In yield property equation, four indexes of MLAI, growth days, ear number and grain number (total grain number) affected principally yield, the ecological factors affecting predominantly yield were effective accumulated temperature, daily mean temperature, daily mean minimum temperature, daily mean maximum temperature in July, the ratios of growth days, rainfall, accumulated temperature, and sunshine hours before and after silking. Combined with the two analytical methods, it could be deduced that the temperature and the allocated ratios before and after silking of ecological factors were the key factors to achieve high yield. Therefore, appropriate sowing data should be adjusted to achieve the suitable temperature indexes during the whole growth stage and the rational allocated ratios of ecological factors before and after silking.展开更多
The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich e...The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich explicit and exact travelling wave solutions,which contain solitary-wave solutions,periodic solutions,and combined formal solitary-wave solutions,are obtained.展开更多
Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are ...Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.展开更多
The longitudinal oscillation of a nonlinear elastic rod with lateral inertia are studied. A nonlinear wave equation is derived. The equation is solved by the method of full approximation.
In this paper, we present a combination method of constructing the explicit and exact solutions of nonlinear partial differential equations. And as an illustrative example, we apply the method to the Benney-Kawahara-L...In this paper, we present a combination method of constructing the explicit and exact solutions of nonlinear partial differential equations. And as an illustrative example, we apply the method to the Benney-Kawahara-Lin equation and derive its many explicit and exact solutions which are all new solutions.展开更多
The gray GM( 1,1) prediction model and Logistic equation gray prediction model were established separately,and then the combined prediction model was established. Taking the water consumption in Ningxia Hui Autonomous...The gray GM( 1,1) prediction model and Logistic equation gray prediction model were established separately,and then the combined prediction model was established. Taking the water consumption in Ningxia Hui Autonomous Region from 2006 to 2012 as modeling data,the total water consumption of the whole region of Ningxia in 2018-2020 was analyzed and predicted. The results show that the accuracy of the three prediction models meets the accuracy requirements,but the gray GM( 1,1) and combined prediction models better conform to the actual situation and have better applicability.展开更多
In some quantum chemical applications, the potential models are linear combination of single exactly solvable potentials. This is the case equivalent of the Stark effect for a charged harmonic oscillator (HO) in a uni...In some quantum chemical applications, the potential models are linear combination of single exactly solvable potentials. This is the case equivalent of the Stark effect for a charged harmonic oscillator (HO) in a uniform electric field of specific strength (HO in an external dipole field). We obtain the exact s-wave solutions of the Dirac equation for some potential models which are linear combination of single exactly solvable potentials (ESPs). In the framework of the spin and pseudospin symmetric concept, we calculate analytical expressions for the energy spectrum and the corresponding two-component upper- and lower-spinors of the two Dirac particles by using the Nikiforov-Uvarov (NU) method, in closed form. The nonrelativistic limit of the solution is also studied and compared with the other works.展开更多
In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a serie...In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a series of explicit exact solutions for many nonlinear evolution equations. As examples, we choose combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrödinger equation and generalized Dullin-Gottwald-Holm equation to demonstrate the effectiveness of these new elliptic function solutions. These new elliptic function solutions can be applied to many other nonlinear evolution equations.展开更多
Starting from the multi-soliton solutions obtained by the Hirota bilinear method,the soli ton molecule structures for the combined mKdV-type bilinear equation(Dt+∑n=1NαnDx2n+1)f*·f=0 are investigated using the ...Starting from the multi-soliton solutions obtained by the Hirota bilinear method,the soli ton molecule structures for the combined mKdV-type bilinear equation(Dt+∑n=1NαnDx2n+1)f*·f=0 are investigated using the velocity resonance mechanism.The two-soliton molecules of the mKdV-35 equation and the three-soliton molecules of the mKdV-357 equation are specifically demonstrated in this paper.With particular selections of the involved arbitrary parameters,especially the wave numbers,it is confirmed that,besides the usual multi-bright soliton molecules,the multi-dark soliton molecules and the mixed multibright-dark soliton molecules can also be obtained.In addition,we discuss the existence of the multi-soliton molecules for the combined mKdV-type bilinear equation with more higher order nonlinear terms and dispersions.The results demonstrate that when N≥4,the combined mKdVtype bilinear equation no longer admits soliton molecules comprising more than four solitons.展开更多
With the development of Global Navigation Satellite Systems(GNSS),geodetic GNSS receivers have been utilized to monitor sea levels using GNSS-Interferometry Reflectometry(GNSS-IR)technology.The multi-mode,multi-freque...With the development of Global Navigation Satellite Systems(GNSS),geodetic GNSS receivers have been utilized to monitor sea levels using GNSS-Interferometry Reflectometry(GNSS-IR)technology.The multi-mode,multi-frequency signals of GPS,GLONASS,Galileo,and Beidou can be used for GNSS-IR sea level retrieval,but combining these retrievals remains problematic.To address this issue,a GNSS-IR sea level retrieval combination system has been developed,which begins by analyzing error sources in GNSS-IR sea level retrieval and establishing and solving the GNSS-IR retrieval equation.This paper focuses on two key points:time window selection and equation stability.The stability of the retrieval combination equations is determined by the condition number of the coefficient matrix within the time window.The impact of ill-conditioned coefficient matrices on the retrieval results is demonstrated using an extreme case of SNR data with only ascending or descending trajectories.After determining the time window and removing ill-conditioned equations,the multi-mode,multi-frequency GNSS-IR retrieval is performed.Results from three International GNSS Service(IGS)stations show that the combination method produces high-precision,high-resolution,and high-reliability sea level retrieval combination sequences.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defined, and a fractional Hamilton principle under this definition is established. The fractional Lagrange equations and the fractional Hamilton canonical equations are derived from the fractional Hamilton principle. A number of special cases are given, showing the universality of our conclusions. At the end of the paper, an example is given to illustrate the application of the results.
文摘Bifurcation, bistability and solitary waves of the combined KdV and mKdV equation are investigatedsystematically. At first, bifurcation and bistability are analyzed by selecting an integral constant as the bifurcationparameter. Then, different conditions expressed in terms of the bifurcation parameter are obtained for the existence ofbreather-like, algebraic, pulse-like solitary waves, and shock waves. All types of the solitary wave and shock wave solutionsare given by direct integration. Finally, an approximate analytic method by employing the interpolation polynomials iscomplete and the theoretical methods are the simplest hitherto.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(Grant No.IRT13097)
文摘In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471120, the NCET-04-0518, FANEDD (No. 200013), the Excellent Young Teachers Program of the Ministry of Education, the Project-Sponsored by SRF for R0CS, and the "333 Project" of Jiangsu Province
文摘A new (29-1)-dimensional lattice equation is presented based upon the first two members in the hierarchy of the combined Toda lattice and relativistic Toda lattice (TL-RTL) equations in (19991) dimensions. A Darboux transformation for the hierarchy of the combined TL-RTL equations is constructed. Solutions of the first two members in the hierarchy of the combined TL-RTL equations, as well as the new (29-1)-dimensional lattice equation are explicitly obtained by the Darboux transformation.
基金Supported by the Natural Science Foundation of Education Department of Henan Province(2011Bl10013) Supported by the Youth Science Foundation of Henan University of Science and Tech- nology(2008QN026)
文摘In this paper the ( G'/G )-expansion method is used to find exact travelling wave solutions for a combined KdV and Schwarzian KdV equation. As a result, multiple travelling wave solutions with arbitrary parameters are obtained, which are expressed by hyperbolic functions, trigonometric functions and rational functions. When the parameters are taken as special values, the solitary waves are derived from the travelling waves. The (G'/G)-expansion method presents a wider applicability for handling nonlinear wave equations.
文摘The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave solutions for the (1 + 1)-dimensional combined KdV-mKdV equation by using the novel (G'/G)-expansion method. Consequently, various traveling wave solutions patterns including solitary wave solutions, periodic solutions, and kinks are detected and exhibited.
基金Supported by the National Key Basic Research Project Foundation of China(G1 9980 30 60 0 ) and theHigher Education Doctoral Fo
文摘With the aid of Mathematica and Wu elimination method,via using a new generalized ansatz and well known Riccati equation,thirty two families of explicit and exact solutions for the generalized combined KdV and mKdV equation are obtained,which contain new solitary wave solutions and periodic wave solutions.This approach can also be applied to other nonlinear evolution equations.
文摘The exact solution for the combined KS and KdV equation is obtained via introducing a simple and effective nonlinear transformations.This method is very concise and primary and can be applied to other unintegrable nonlinear evolution equations.It is common knowledge that the Korteweg de Vries(KdV) equation [1] (1)has been proposed as model equation for the weakly nonlinear long waves which occur in many different physical systems; the Kuramoto-Sivashinsky (KS) equationis one of the simplest nonliaear partial differential equations that exhibit Chaotic behavior frequently encounted in the study of continous media [2-4] . Many interesting mathematical and physical properties of eqs. (1) and (2) have been studied widely. But, in several problems where a lonq wavelength oscilatory instability is found, the noulineai evolution of the perturbations near rriticality is governed by the dispersion modified Kuramoto-Sivashi nsky equation(3)ft is clear that this equation is a combination of the KdV and
基金supported by the National High-Tech Research and Development Program of China(2006AA10Z272)the National Basic Research Program of China (2006BAD02A13)
文摘The mechanism of action of ecological factors affecting crop growth and development was complicated. In order to study the relationships between ecological factors and the indexes of yield property equation and determine the main ecological factors affecting yield, using 3-yr field experimental results for different yielding spring maize (Zea mays L.) populations and the relative meteorological observation data in Huadian of Jilin Province in China, and analyzing on the base of the yield property equation (MLAI × D × MNAR × HI = EN × GN × GW), the main ecological factors were screened, and further mechanisms of action affecting yield were analyzed. Stepwise regression analysis showed that yield was affected mainly by effective accumulated temperature, daily mean minimum temperature, daily mean maximum temperature in July, the ratios of growth days, and the sunshine hour before and after silking. In yield property equation, four indexes of MLAI, growth days, ear number and grain number (total grain number) affected principally yield, the ecological factors affecting predominantly yield were effective accumulated temperature, daily mean temperature, daily mean minimum temperature, daily mean maximum temperature in July, the ratios of growth days, rainfall, accumulated temperature, and sunshine hours before and after silking. Combined with the two analytical methods, it could be deduced that the temperature and the allocated ratios before and after silking of ecological factors were the key factors to achieve high yield. Therefore, appropriate sowing data should be adjusted to achieve the suitable temperature indexes during the whole growth stage and the rational allocated ratios of ecological factors before and after silking.
文摘The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich explicit and exact travelling wave solutions,which contain solitary-wave solutions,periodic solutions,and combined formal solitary-wave solutions,are obtained.
基金partially supported by Grant No.DFNI I-02/9 of the Bulgarian Science Fund
文摘Finite time blow up of the solutions to Boussinesq equation with linear restoring force and combined power nonlinearities is studied. Sufficient conditions on the initial data for nonexistence of global solutions are derived. The results are valid for initial data with arbitrary high positive energy. The proofs are based on the concave method and new sign preserving functionals.
基金Project supported by the National Natural Science Foundation of China(No.10575082)
文摘The longitudinal oscillation of a nonlinear elastic rod with lateral inertia are studied. A nonlinear wave equation is derived. The equation is solved by the method of full approximation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672053)
文摘In this paper, we present a combination method of constructing the explicit and exact solutions of nonlinear partial differential equations. And as an illustrative example, we apply the method to the Benney-Kawahara-Lin equation and derive its many explicit and exact solutions which are all new solutions.
基金Supported by Ningxia Natural Science Foundation (NZ17032)Key Research and Development Program of Ningxia (2018BEG03008)+1 种基金First-rate Discipline (Hydraulic Engineering Discipline) Project of Colleges and Universities in Ningxia (NXYLXK2017A03)National Natural Science Foundation (51269022)
文摘The gray GM( 1,1) prediction model and Logistic equation gray prediction model were established separately,and then the combined prediction model was established. Taking the water consumption in Ningxia Hui Autonomous Region from 2006 to 2012 as modeling data,the total water consumption of the whole region of Ningxia in 2018-2020 was analyzed and predicted. The results show that the accuracy of the three prediction models meets the accuracy requirements,but the gray GM( 1,1) and combined prediction models better conform to the actual situation and have better applicability.
文摘In some quantum chemical applications, the potential models are linear combination of single exactly solvable potentials. This is the case equivalent of the Stark effect for a charged harmonic oscillator (HO) in a uniform electric field of specific strength (HO in an external dipole field). We obtain the exact s-wave solutions of the Dirac equation for some potential models which are linear combination of single exactly solvable potentials (ESPs). In the framework of the spin and pseudospin symmetric concept, we calculate analytical expressions for the energy spectrum and the corresponding two-component upper- and lower-spinors of the two Dirac particles by using the Nikiforov-Uvarov (NU) method, in closed form. The nonrelativistic limit of the solution is also studied and compared with the other works.
文摘In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a series of explicit exact solutions for many nonlinear evolution equations. As examples, we choose combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrödinger equation and generalized Dullin-Gottwald-Holm equation to demonstrate the effectiveness of these new elliptic function solutions. These new elliptic function solutions can be applied to many other nonlinear evolution equations.
基金the National Natural Science Foundation of China(Grant Nos.11975204 and 12075208)the Project of Zhoushan City Science and Technology Bureau(Grant No.2021C21015)the Training Program for Leading Talents in Universities of Zhejiang Province。
文摘Starting from the multi-soliton solutions obtained by the Hirota bilinear method,the soli ton molecule structures for the combined mKdV-type bilinear equation(Dt+∑n=1NαnDx2n+1)f*·f=0 are investigated using the velocity resonance mechanism.The two-soliton molecules of the mKdV-35 equation and the three-soliton molecules of the mKdV-357 equation are specifically demonstrated in this paper.With particular selections of the involved arbitrary parameters,especially the wave numbers,it is confirmed that,besides the usual multi-bright soliton molecules,the multi-dark soliton molecules and the mixed multibright-dark soliton molecules can also be obtained.In addition,we discuss the existence of the multi-soliton molecules for the combined mKdV-type bilinear equation with more higher order nonlinear terms and dispersions.The results demonstrate that when N≥4,the combined mKdVtype bilinear equation no longer admits soliton molecules comprising more than four solitons.
基金National Natural Science Foundation of China(No.42004018)。
文摘With the development of Global Navigation Satellite Systems(GNSS),geodetic GNSS receivers have been utilized to monitor sea levels using GNSS-Interferometry Reflectometry(GNSS-IR)technology.The multi-mode,multi-frequency signals of GPS,GLONASS,Galileo,and Beidou can be used for GNSS-IR sea level retrieval,but combining these retrievals remains problematic.To address this issue,a GNSS-IR sea level retrieval combination system has been developed,which begins by analyzing error sources in GNSS-IR sea level retrieval and establishing and solving the GNSS-IR retrieval equation.This paper focuses on two key points:time window selection and equation stability.The stability of the retrieval combination equations is determined by the condition number of the coefficient matrix within the time window.The impact of ill-conditioned coefficient matrices on the retrieval results is demonstrated using an extreme case of SNR data with only ascending or descending trajectories.After determining the time window and removing ill-conditioned equations,the multi-mode,multi-frequency GNSS-IR retrieval is performed.Results from three International GNSS Service(IGS)stations show that the combination method produces high-precision,high-resolution,and high-reliability sea level retrieval combination sequences.