Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylbor...Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylboronic acid(PBA)were synthesized,of which SA served as targeting ligand for coccidium and reversible-binding bridge for PBA.The enhanced drug-loading capacity of SPCS micelles was attributed to a combination assembly from hydrophobicity-driving and reversible borate bridges.The drug-loaded SPCS micelles shared superior biostability in upper gastrointestinal tract.After reaching the lesions,the borate bridges were snipped by carbohydrates under a higher pH followed by accelerated drug release,while SA exposure on micellar surface facilitated drug cellular internalization to eliminate parasites inside.The drugmicelles revealed an enhanced anti-coccidial capacity with a higher index of 185.72 compared with commercial preparation.The dual-responsive combination of physicochemical assembly could provide an efficient strategy for the exploitation of stable,safe and flexible anti-infectious drug delivery systems.展开更多
基金financial support from National Key Research and Development Program(2017YFD0501403)National Natural Science Foundation of China(Nos.81872819)+4 种基金Natural Science Foundation of Jiangsu Province(No.BK20171390)supported by Double First-Rate construction plan of China Pharmaceutical University(CPU2018GY26)the Project of State Key Laboratory of Natural Medicines,China Pharmaceutical University(No.SKLNMZZCX201816)the National Science and Technology Major Project(2017ZX09101001)the financial support from Development Funds for Priority Academic Programs in Jiangsu Higher Education Institutions-Young Talent Program。
文摘Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylboronic acid(PBA)were synthesized,of which SA served as targeting ligand for coccidium and reversible-binding bridge for PBA.The enhanced drug-loading capacity of SPCS micelles was attributed to a combination assembly from hydrophobicity-driving and reversible borate bridges.The drug-loaded SPCS micelles shared superior biostability in upper gastrointestinal tract.After reaching the lesions,the borate bridges were snipped by carbohydrates under a higher pH followed by accelerated drug release,while SA exposure on micellar surface facilitated drug cellular internalization to eliminate parasites inside.The drugmicelles revealed an enhanced anti-coccidial capacity with a higher index of 185.72 compared with commercial preparation.The dual-responsive combination of physicochemical assembly could provide an efficient strategy for the exploitation of stable,safe and flexible anti-infectious drug delivery systems.