Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback ...Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.展开更多
The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitud...The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.展开更多
A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial ten...A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial tension/compression and bending/shearing couplings as well as the mutual reactions of fiber yarns. The method determining microstructure by using woven parameters is described for a typical 3D woven composite material. An analytical cell, constructed by a minimum periodic section of yarn and interlayer matrix, is adopted. Micro stresses in the cell under in-plane tensile loading are obtained by using the proposed beam model and macro modulus is then obtained by the averaging method. Material tests and a 2D micro FEM analysis are made to evaluate this model. Analyses reveal that micro stress caused by tensile/bending coupling effect is not negligible in the stress analysis.展开更多
The performance of a laser weapon system based on coherent beam combining(CBC)depends on its propagation properties in the atmosphere.In this study,an analytical model based on partial coherent beam combining(PCBC)for...The performance of a laser weapon system based on coherent beam combining(CBC)depends on its propagation properties in the atmosphere.In this study,an analytical model based on partial coherent beam combining(PCBC)for assumed coherence coefficients between beams in a CBC lattice was developed.The Kolmogorov model of atmospheric turbulence and the Hufnagel-Valley model of C^(2)_(n) dependence on atmospheric parameters were implemented.Novel simplified metrics were proposed to assess the CBC performance.Several beam profiles(super-Gaussian,truncated Gaussian,etc.)and geometries were analyzed in terms of maximal intensity in the far field.An approximate formula for PCBC efficiency dependent on the Fried radius was proposed.The results of CBC modeling were compared to those of the Gaussian beam propagation model in a turbulent atmosphere.The dependence of CBC performance on the C^(2)_(n) parameter,range,and elevation angle was analyzed.It could be concluded that the application of CBC for medium and long range propagation is impractical without an effective adaptive optics system.展开更多
By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser be...By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.展开更多
We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics...We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator(AFOC),and the PL control is realized by the phase modulator(PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent(SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector(PD) are employed,and a computer and a control circuit based on field programmable gate array(FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.展开更多
We demonstrate coherent beam combining of two tiled-aperture single-frequency fibre amplifiers with a total output power of 29.65 W by using the multi-dithering technique. The two laser beams are packaged closely by u...We demonstrate coherent beam combining of two tiled-aperture single-frequency fibre amplifiers with a total output power of 29.65 W by using the multi-dithering technique. The two laser beams are packaged closely by using free-space mirrors side by side into a tiled-aperture with a near-field fill factor of 62%. Active phase control of the amplifier is performed on commercially available digital lock-in amplifiers. Experimental results show that the power contained in the main-lobe in closed-loop is 1.72 times greater than that in open-loop, which is 86% for the ideal case. The fringe contrast of the far-field fringe pattern is as high as 80% when the system is in closed-loop. The beam quality of the combined beam is computed to he BQ = 1.48. The whole system in closed-loop performs well in a long-time observation.展开更多
Coherent beam combining of two fibre amplifier chains with a total power of 260 W in a compact system using the stochastic parallel gradient descent (SPGD) algorithm is demonstrated. A 150 MHz linewidth fibre laser ...Coherent beam combining of two fibre amplifier chains with a total power of 260 W in a compact system using the stochastic parallel gradient descent (SPGD) algorithm is demonstrated. A 150 MHz linewidth fibre laser is built and introduced for high-power amplification to mitigate stimulated Brillouin scattering (SBS). Compact high-power amplifier chains are built with low power all-fibre system and high-power bulk free-optics fibre amplifiers. When the total power is about 260 W, active phase-locking of two high-power amplifiers is demonstrated using the SPGD algorithm. In closed-loop, the power in the main lobe increases 1.68 times, the visibility is increased from 0 to 0.62, and the phase residual error is less than λ/10.展开更多
The majority of existing high-power laser therapeutic instruments employ a single wavelength for a single target;thus,they do not meet the requirements for clinical treatment.Therefore,this study designs an optical sy...The majority of existing high-power laser therapeutic instruments employ a single wavelength for a single target;thus,they do not meet the requirements for clinical treatment.Therefore,this study designs an optical system for a dual-wavelength high-power laser therapeutic device with a variable spot size.The waist of the short arm of the optical cavity and the G1G2 parameter(G-parameter equivalent cavity method)is calculated using MATLAB software,the spot size and divergence angle on the lens are calculated using an ABCD matrix,and the distance between the treatment spot at different spot sizes and the transformation lens is calculated in order to design the treatment handpiece.Experiments are conducted to analyze the stability at an output power of 532 nm before beam combination and the power loss after beam combination.The results show that the output power stability of the 532-nm beam varies by less than 2%over 150 min,and the loss of both wavelengths is less than 20%,which meets the clinical requirements of the system.The safety performance can meet the requirements of national general standards for medical electrical safety.The proposed dual-wavelength laser therapy instrument has both visible wave and near-infrared wave characteristics;thus,it can accurately target both superficial vessels and vessels with a larger diameter and deeper position.This therapeutic device has the advantages of simple operation,stable and reliable laser output,high security and strong anti-interference ability,and meets the comprehensive clinical treat-ment demands of vascular diseases.展开更多
The influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system is investigated theoretically and experimentally.In the theoretical work,a new theoretical algori...The influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system is investigated theoretically and experimentally.In the theoretical work,a new theoretical algorithm is presented for the coherent combining efficiency,which can be used to quantify the spectral coherence decay induced by optical nonlinearity imbalance between the sub-beams.The spectral information of the sub-beam is obtained by numerically solving the nonlinear Schrödinger equation(NLSE)in this algorithm to ensure an accurate prediction.In the experimental work,the coherent combining of two all-fiber picosecond lasers is achieved,and the influence of imbalanced optical nonlinearity on the combining efficiency is studied,which agrees with the theoretical prediction.This paper reveals the physical mechanism for the influence of optical nonlinearity on the combining efficiency,which is valuable for the coherent combining of ultrashort pulse fiber laser beams.展开更多
An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported.Within this system,each channel incorporates a rod-type fiber power amplifier,with individual operations reaching appro...An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported.Within this system,each channel incorporates a rod-type fiber power amplifier,with individual operations reaching approximately 233 W.The active-locking of these coherently combined channels,followed by compression using gratings,yields an output with a pulse energy of 504μJ and an average power of 403 W.Exceptional stability is maintained,with a 0.3%root mean square(RMS)deviation and a beam quality factor M^(2)<1.2.Notably,precise dispersion management of the front-end seed light effectively compensates for the accumulated high-order dispersion in subsequent amplification stages.This strategic approach results in a significant reduction in the final output pulse duration for the coherently combined laser beam,reducing it from 488 to 260 fs after the gratings compressor,while concurrently enhancing the energy of the primary peak from 65%to 92%.展开更多
Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a p...Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh- Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.展开更多
The generation of terahertz(THz) waves by focusing a femtosecond pulsed laser beam at a distance is able to overcome the strong absorption properties of air and has rapidly attracted the attention of industry. However...The generation of terahertz(THz) waves by focusing a femtosecond pulsed laser beam at a distance is able to overcome the strong absorption properties of air and has rapidly attracted the attention of industry. However, the poor directionality of the THz wave radiation generated by this method is not conducive to THz wave applications. By controlling the morphology of the ultrafast laser-excited plasma filament and its electron density distribution through coherent beam combining technology, we achieve direct THz beam shaping and are able to obtain THz wave radiation of Gaussian or arbitrary transverse distribution. The novel experimental approach proposed in this paper opens up the research field of direct THz wave shaping using plasma. Moreover, it innovates multi-parameter convergence algorithms and, by doing so, has the potential to find beam patterns with higher energy conversion efficiency and break the energy limit of THz waves emitted by lasers at high power.展开更多
Coherent polarization beam combination (CPBC) is a new kind of coherent beam combination configuration with high combining efficiency and excellent beam quality. In order to extend the CPBC system to a large scale, ...Coherent polarization beam combination (CPBC) is a new kind of coherent beam combination configuration with high combining efficiency and excellent beam quality. In order to extend the CPBC system to a large scale, we provide a comparative study on the power scaling performance of three different coherent polarization beam combination system structures. It is found that the pairwise structure has high tolerance to aberrations and has the potential to extend to a large scale with high combining efficiency. In consideration of all the aberrations, the combining efficiency of the pairwise structure can be attained as high as 90% when the combined beams are more than 200. Some instructive suggestions are given to extend the CPBC system to a large scale.展开更多
We present the numerical and experimental study on the coherent beam combining of fibre amplifiers by means of simulated annealing (SA) algorithm. The feasibility is validated by the Monte Carlo simulation of correc...We present the numerical and experimental study on the coherent beam combining of fibre amplifiers by means of simulated annealing (SA) algorithm. The feasibility is validated by the Monte Carlo simulation of correcting static phase distortion using SA algorithm. The performance of SA algorithm under time-varying phase noise is numerically studied by dynamic simulation. It is revealed that the influence of phase noise on the performance of SA algorithm gets stronger with an increase in amplitude or frequency of phase noise; and the laser array that contains more lasers will be more affected from phase noise. The performance of SA algorithm for coherent beam combining is also compared with a widely used stochastic optimization algorithm, i.e., the stochastic parallel gradient descent (SPGD) algorithm. In a proof-of-concept experiment we demonstrate the coherent beam combining of two 1083~nm fibre amplifiers with a total output power of 12~W and 93% combining efficiency. The contrast of the far-field coherently combined beam profiles is calculated to be as high as 95%.展开更多
A seed laser oscillating at different frequencies is proved to have the potential to mitigate the stimulated Brillouin scattering(SBS) effect in a fiber amplifier,which may increase the emission power of a coherent ...A seed laser oscillating at different frequencies is proved to have the potential to mitigate the stimulated Brillouin scattering(SBS) effect in a fiber amplifier,which may increase the emission power of a coherent beam combination(CBC) system greatly.In this study,a basic mathematical model describing the multi-wavelength CBC is proposed on the fundamentals of CBC.A useful method for estimating the combination effect and analysing the feasibility and the validity of the multi-wavelength coherent combination is provided.In the numerical analysis,accordant results with four-wavelength four-channel CBC experiments are obtained.Through calculations of some examples with certain spectra,the unanticipated excellent combination effect with a few frequencies involved is explained,and the dependence of the combination effect on the variance of the amplifier chain length and the channel number is clarified.展开更多
A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually...A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.展开更多
A novel scheme of fully immersing water cooling is proposed for a Nd:glass radial slab laser. The slab medium is entirely immersed in the circulating water Ailing the pumping cavity, which enables much lower temperat...A novel scheme of fully immersing water cooling is proposed for a Nd:glass radial slab laser. The slab medium is entirely immersed in the circulating water Ailing the pumping cavity, which enables much lower temperature and reasonably smaller thermal gradient in the slab medium. The radial slab is symmetrically and synchronously pumped by eight flash lamps, and produces multi-output beams with a total energy of 469md. Incoherent beam combination property of the multi-output beams is also investigated. The approach suggested here provides a way of scaling the slab lasers to much higher output levels and also a convenience for beam combinations.展开更多
In this paper, we studied incoherent and coherent beam combining for the master oscillator/power amplifier (MOPA) system with stimulated Brillouin scattering (SBS) mirror. Optic field intensity distributions in th...In this paper, we studied incoherent and coherent beam combining for the master oscillator/power amplifier (MOPA) system with stimulated Brillouin scattering (SBS) mirror. Optic field intensity distributions in the near and far field are numerically calculated for the two kinds of system. The results show that good beam quality in the far field could be obtained. It provides a theoretical basis for experimental research in the future.展开更多
We proposed an aperiodic laser beam distribution, in which the laser beams are placed along a Fermat spiral, to suppress the sidelobe power in the coherent beam combining. Owing to the changed distances between two co...We proposed an aperiodic laser beam distribution, in which the laser beams are placed along a Fermat spiral, to suppress the sidelobe power in the coherent beam combining. Owing to the changed distances between two consecutive beams, the conditions of the sidelobe suppression are naturally satisfied. The Fermat spiral array was demonstrated to achieve a better sidelobe suppression than the periodic arrays, and the effects of various factors on the sidelobe suppression were analyzed numerically. Experiments were carried out to verify the sidelobe suppression by different Fermat spiral arrays, and the results matched well with the simulations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62275272)the Training Program for Excellent Young Innovators of Changsha(Grant No.KQ2305025)。
文摘Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.
基金Project supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2020029)。
文摘The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.
文摘A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial tension/compression and bending/shearing couplings as well as the mutual reactions of fiber yarns. The method determining microstructure by using woven parameters is described for a typical 3D woven composite material. An analytical cell, constructed by a minimum periodic section of yarn and interlayer matrix, is adopted. Micro stresses in the cell under in-plane tensile loading are obtained by using the proposed beam model and macro modulus is then obtained by the averaging method. Material tests and a 2D micro FEM analysis are made to evaluate this model. Analyses reveal that micro stress caused by tensile/bending coupling effect is not negligible in the stress analysis.
基金This work was financed in the framework of the strategic program DOB-1-6/1/PS/2014 funded by the National Center for Research and Development of Poland.
文摘The performance of a laser weapon system based on coherent beam combining(CBC)depends on its propagation properties in the atmosphere.In this study,an analytical model based on partial coherent beam combining(PCBC)for assumed coherence coefficients between beams in a CBC lattice was developed.The Kolmogorov model of atmospheric turbulence and the Hufnagel-Valley model of C^(2)_(n) dependence on atmospheric parameters were implemented.Novel simplified metrics were proposed to assess the CBC performance.Several beam profiles(super-Gaussian,truncated Gaussian,etc.)and geometries were analyzed in terms of maximal intensity in the far field.An approximate formula for PCBC efficiency dependent on the Fried radius was proposed.The results of CBC modeling were compared to those of the Gaussian beam propagation model in a turbulent atmosphere.The dependence of CBC performance on the C^(2)_(n) parameter,range,and elevation angle was analyzed.It could be concluded that the application of CBC for medium and long range propagation is impractical without an effective adaptive optics system.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474257 and 61605183
文摘By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.
文摘We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator(AFOC),and the PL control is realized by the phase modulator(PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent(SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector(PD) are employed,and a computer and a control circuit based on field programmable gate array(FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.
文摘We demonstrate coherent beam combining of two tiled-aperture single-frequency fibre amplifiers with a total output power of 29.65 W by using the multi-dithering technique. The two laser beams are packaged closely by using free-space mirrors side by side into a tiled-aperture with a near-field fill factor of 62%. Active phase control of the amplifier is performed on commercially available digital lock-in amplifiers. Experimental results show that the power contained in the main-lobe in closed-loop is 1.72 times greater than that in open-loop, which is 86% for the ideal case. The fringe contrast of the far-field fringe pattern is as high as 80% when the system is in closed-loop. The beam quality of the combined beam is computed to he BQ = 1.48. The whole system in closed-loop performs well in a long-time observation.
基金supported by the Innovation Foundation for Graduates in National University of Defense Technology,China(Grant No.B080702)
文摘Coherent beam combining of two fibre amplifier chains with a total power of 260 W in a compact system using the stochastic parallel gradient descent (SPGD) algorithm is demonstrated. A 150 MHz linewidth fibre laser is built and introduced for high-power amplification to mitigate stimulated Brillouin scattering (SBS). Compact high-power amplifier chains are built with low power all-fibre system and high-power bulk free-optics fibre amplifiers. When the total power is about 260 W, active phase-locking of two high-power amplifiers is demonstrated using the SPGD algorithm. In closed-loop, the power in the main lobe increases 1.68 times, the visibility is increased from 0 to 0.62, and the phase residual error is less than λ/10.
基金supported by the National Key R&D Program of China(No.2017YFB0403802)the Technology Cooperation High-tech Industriali-zation Program of Jilin Province of China and the Chinese Academy of Sciences(No.2018SYHZ0023)+2 种基金the Key Technology R&D Program of Jilin Prov-ince of China(No.20180201047YY)the Scientific Research Program of Shanghai Science and Tech-nology Commission(No.18441904300)the Technology Cooperation High-tech Industrializa-tion Program of Jilin Province of China and the Chinese Academy of Sciences(No.2019SYHZ0032)
文摘The majority of existing high-power laser therapeutic instruments employ a single wavelength for a single target;thus,they do not meet the requirements for clinical treatment.Therefore,this study designs an optical system for a dual-wavelength high-power laser therapeutic device with a variable spot size.The waist of the short arm of the optical cavity and the G1G2 parameter(G-parameter equivalent cavity method)is calculated using MATLAB software,the spot size and divergence angle on the lens are calculated using an ABCD matrix,and the distance between the treatment spot at different spot sizes and the transformation lens is calculated in order to design the treatment handpiece.Experiments are conducted to analyze the stability at an output power of 532 nm before beam combination and the power loss after beam combination.The results show that the output power stability of the 532-nm beam varies by less than 2%over 150 min,and the loss of both wavelengths is less than 20%,which meets the clinical requirements of the system.The safety performance can meet the requirements of national general standards for medical electrical safety.The proposed dual-wavelength laser therapy instrument has both visible wave and near-infrared wave characteristics;thus,it can accurately target both superficial vessels and vessels with a larger diameter and deeper position.This therapeutic device has the advantages of simple operation,stable and reliable laser output,high security and strong anti-interference ability,and meets the comprehensive clinical treat-ment demands of vascular diseases.
基金upported by the Key Program of Beijing Municipal Natural Science Foundation,China(Grant No.KZ201910005006)the National Natural Science Foundation of China(Grant No.62005004)+1 种基金Natural Science Foundation of Beijing Municipality,China(Grant No.4204091)National Science Foundation for Post-doctor Scientists of China(Grant No.212423)。
文摘The influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system is investigated theoretically and experimentally.In the theoretical work,a new theoretical algorithm is presented for the coherent combining efficiency,which can be used to quantify the spectral coherence decay induced by optical nonlinearity imbalance between the sub-beams.The spectral information of the sub-beam is obtained by numerically solving the nonlinear Schrödinger equation(NLSE)in this algorithm to ensure an accurate prediction.In the experimental work,the coherent combining of two all-fiber picosecond lasers is achieved,and the influence of imbalanced optical nonlinearity on the combining efficiency is studied,which agrees with the theoretical prediction.This paper reveals the physical mechanism for the influence of optical nonlinearity on the combining efficiency,which is valuable for the coherent combining of ultrashort pulse fiber laser beams.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.9215010612021004,and 11934006)the Innovation Project of Optics Valley Laboratory(No.OVL2021ZD001),the Major Program(JD)of Hubei Province(No.203BAA015)the Cross Research Support Program of Huazhong University of Science and Technology(No.2023JCYJ041).
文摘An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported.Within this system,each channel incorporates a rod-type fiber power amplifier,with individual operations reaching approximately 233 W.The active-locking of these coherently combined channels,followed by compression using gratings,yields an output with a pulse energy of 504μJ and an average power of 403 W.Exceptional stability is maintained,with a 0.3%root mean square(RMS)deviation and a beam quality factor M^(2)<1.2.Notably,precise dispersion management of the front-end seed light effectively compensates for the accumulated high-order dispersion in subsequent amplification stages.This strategic approach results in a significant reduction in the final output pulse duration for the coherently combined laser beam,reducing it from 488 to 260 fs after the gratings compressor,while concurrently enhancing the energy of the primary peak from 65%to 92%.
文摘Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh- Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074272 and 61905271)the National Defense Science and Technology Innovation Special Zone Project of China (Grant No. 20-163-02-ZT-008-009-01)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011083)。
文摘The generation of terahertz(THz) waves by focusing a femtosecond pulsed laser beam at a distance is able to overcome the strong absorption properties of air and has rapidly attracted the attention of industry. However, the poor directionality of the THz wave radiation generated by this method is not conducive to THz wave applications. By controlling the morphology of the ultrafast laser-excited plasma filament and its electron density distribution through coherent beam combining technology, we achieve direct THz beam shaping and are able to obtain THz wave radiation of Gaussian or arbitrary transverse distribution. The novel experimental approach proposed in this paper opens up the research field of direct THz wave shaping using plasma. Moreover, it innovates multi-parameter convergence algorithms and, by doing so, has the potential to find beam patterns with higher energy conversion efficiency and break the energy limit of THz waves emitted by lasers at high power.
文摘Coherent polarization beam combination (CPBC) is a new kind of coherent beam combination configuration with high combining efficiency and excellent beam quality. In order to extend the CPBC system to a large scale, we provide a comparative study on the power scaling performance of three different coherent polarization beam combination system structures. It is found that the pairwise structure has high tolerance to aberrations and has the potential to extend to a large scale with high combining efficiency. In consideration of all the aberrations, the combining efficiency of the pairwise structure can be attained as high as 90% when the combined beams are more than 200. Some instructive suggestions are given to extend the CPBC system to a large scale.
文摘We present the numerical and experimental study on the coherent beam combining of fibre amplifiers by means of simulated annealing (SA) algorithm. The feasibility is validated by the Monte Carlo simulation of correcting static phase distortion using SA algorithm. The performance of SA algorithm under time-varying phase noise is numerically studied by dynamic simulation. It is revealed that the influence of phase noise on the performance of SA algorithm gets stronger with an increase in amplitude or frequency of phase noise; and the laser array that contains more lasers will be more affected from phase noise. The performance of SA algorithm for coherent beam combining is also compared with a widely used stochastic optimization algorithm, i.e., the stochastic parallel gradient descent (SPGD) algorithm. In a proof-of-concept experiment we demonstrate the coherent beam combining of two 1083~nm fibre amplifiers with a total output power of 12~W and 93% combining efficiency. The contrast of the far-field coherently combined beam profiles is calculated to be as high as 95%.
基金Project supported by the Innovation Foundation for Postgraduates in the National University of Defense Technology,China(Grant No. S090701)
文摘A seed laser oscillating at different frequencies is proved to have the potential to mitigate the stimulated Brillouin scattering(SBS) effect in a fiber amplifier,which may increase the emission power of a coherent beam combination(CBC) system greatly.In this study,a basic mathematical model describing the multi-wavelength CBC is proposed on the fundamentals of CBC.A useful method for estimating the combination effect and analysing the feasibility and the validity of the multi-wavelength coherent combination is provided.In the numerical analysis,accordant results with four-wavelength four-channel CBC experiments are obtained.Through calculations of some examples with certain spectra,the unanticipated excellent combination effect with a few frequencies involved is explained,and the dependence of the combination effect on the variance of the amplifier chain length and the channel number is clarified.
基金supported by the Innovation Foundation for Graduates in National University of Defense Technology,China (GrantNo.B080702)
文摘A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.
基金Supported by the Major Innovation Program of Shandong Province under Grant No 2013CXA10006the National Natural Science Foundation of China under Grant No 61108008
文摘A novel scheme of fully immersing water cooling is proposed for a Nd:glass radial slab laser. The slab medium is entirely immersed in the circulating water Ailing the pumping cavity, which enables much lower temperature and reasonably smaller thermal gradient in the slab medium. The radial slab is symmetrically and synchronously pumped by eight flash lamps, and produces multi-output beams with a total energy of 469md. Incoherent beam combination property of the multi-output beams is also investigated. The approach suggested here provides a way of scaling the slab lasers to much higher output levels and also a convenience for beam combinations.
文摘In this paper, we studied incoherent and coherent beam combining for the master oscillator/power amplifier (MOPA) system with stimulated Brillouin scattering (SBS) mirror. Optic field intensity distributions in the near and far field are numerically calculated for the two kinds of system. The results show that good beam quality in the far field could be obtained. It provides a theoretical basis for experimental research in the future.
基金This work was supported by the National Natural Science Foundation of China(Nos.62005207 and 61701505)the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2019KF06)the Natural Science Foundation of Shaanxi Province(Nos.2019JQ-648 and 2018JQ-6080)。
文摘We proposed an aperiodic laser beam distribution, in which the laser beams are placed along a Fermat spiral, to suppress the sidelobe power in the coherent beam combining. Owing to the changed distances between two consecutive beams, the conditions of the sidelobe suppression are naturally satisfied. The Fermat spiral array was demonstrated to achieve a better sidelobe suppression than the periodic arrays, and the effects of various factors on the sidelobe suppression were analyzed numerically. Experiments were carried out to verify the sidelobe suppression by different Fermat spiral arrays, and the results matched well with the simulations.