A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failur...A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.展开更多
Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmen...Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made.展开更多
In the longitudinal seismic deformation method for shield tunnels,one of the most commonly used is the longitudinal equivalent stiffness beam model(LES)for simulating the mechanical behavior of the lining.In this mode...In the longitudinal seismic deformation method for shield tunnels,one of the most commonly used is the longitudinal equivalent stiffness beam model(LES)for simulating the mechanical behavior of the lining.In this model,axial deformation and bending deformation are independent,so the equivalent stiffness is a constant value.However,the actual situation is that axial deformation and bending deformation occur simultaneously,which is not considered in LES.At present,we are not clear about the effect on the calculation results when axial deformation and bending deformation occur simultaneously.Therefore,in this paper,we improve the traditional LES by taking the relative deformation as a load and considering the coordinated deformation of axial and bending degrees of freedom.This improved model is called DNLES,and its neutral axis equations are an explicit expression.Then,we propose an iterative algorithm to solve the calculation model of the DNLES-based longitudinal seismic deformation method.Through a calculation example,we find that the internal forces based on LES are notably underestimated than those of DNLES in the compression bending zone,while are overestimated in the tension bending zone.When considering the combined effect,the maximum bending moment reached 13.7 times that of the LES model,and the axial pressure and tension were about 1.14 and 0.96 times,respectively.Further analysis reveals the coordinated deformation process in the axial and bending directions of the shield tunnel,which leads to a consequent change in equivalent stiffness.This explains why,in the longitudinal seismic deformation method,the traditional LES may result in unreasonable calculation results.展开更多
文摘A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.
文摘Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made.
基金the National Natural Science Foundation of China(Grant Nos.52130808 and 51878566)National Key R&D Program of China(Key Projects for International Science and Technology Innovation Cooperation between Governments,Grant No.2022YFE0104300).
文摘In the longitudinal seismic deformation method for shield tunnels,one of the most commonly used is the longitudinal equivalent stiffness beam model(LES)for simulating the mechanical behavior of the lining.In this model,axial deformation and bending deformation are independent,so the equivalent stiffness is a constant value.However,the actual situation is that axial deformation and bending deformation occur simultaneously,which is not considered in LES.At present,we are not clear about the effect on the calculation results when axial deformation and bending deformation occur simultaneously.Therefore,in this paper,we improve the traditional LES by taking the relative deformation as a load and considering the coordinated deformation of axial and bending degrees of freedom.This improved model is called DNLES,and its neutral axis equations are an explicit expression.Then,we propose an iterative algorithm to solve the calculation model of the DNLES-based longitudinal seismic deformation method.Through a calculation example,we find that the internal forces based on LES are notably underestimated than those of DNLES in the compression bending zone,while are overestimated in the tension bending zone.When considering the combined effect,the maximum bending moment reached 13.7 times that of the LES model,and the axial pressure and tension were about 1.14 and 0.96 times,respectively.Further analysis reveals the coordinated deformation process in the axial and bending directions of the shield tunnel,which leads to a consequent change in equivalent stiffness.This explains why,in the longitudinal seismic deformation method,the traditional LES may result in unreasonable calculation results.