To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zo...To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.展开更多
Stress analysis and optimization of combined die structure with two stress rings were performed.Using thermoelastic deformation,the contact pressure at the interfaces between layers was calculated.Then,theoretical exp...Stress analysis and optimization of combined die structure with two stress rings were performed.Using thermoelastic deformation,the contact pressure at the interfaces between layers was calculated.Then,theoretical expressions of stress distribution for the combined die were derived.The thermal-mechanical effect under working conditions was considered.To verify the theoretical expressions,simulation work was performed.Optimization of die design was carried out by defining radius ratio and shrink fit coefficient as optimization variables.The objective was to minimize the effective circumferential stress at the inner surface of the die insert,under the constraint that the maximum equivalent stress values of die insert and stress rings did not exceed their respective yield stresses.The Kriging model was used to describe the influence of shrink fit and die dimensions on the objective function and the maximum equivalent stress.Using a genetic algorithm,optimum parameters were found with a minimum circumferential stress of 442.9 MPa under a working stress of 1800 MPa.Further analysis of five selected optimal results was carried out,and the specific design parameters of these combined dies are different under the same level of circumferential stress,and the combined die is overdesigned if the thermal effect is ignored.展开更多
基金Projects(51334006,50274020)supported by the National Natural Science Foundation of China
文摘To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.
基金the National Natural Science Foundation of China(No.51475294)。
文摘Stress analysis and optimization of combined die structure with two stress rings were performed.Using thermoelastic deformation,the contact pressure at the interfaces between layers was calculated.Then,theoretical expressions of stress distribution for the combined die were derived.The thermal-mechanical effect under working conditions was considered.To verify the theoretical expressions,simulation work was performed.Optimization of die design was carried out by defining radius ratio and shrink fit coefficient as optimization variables.The objective was to minimize the effective circumferential stress at the inner surface of the die insert,under the constraint that the maximum equivalent stress values of die insert and stress rings did not exceed their respective yield stresses.The Kriging model was used to describe the influence of shrink fit and die dimensions on the objective function and the maximum equivalent stress.Using a genetic algorithm,optimum parameters were found with a minimum circumferential stress of 442.9 MPa under a working stress of 1800 MPa.Further analysis of five selected optimal results was carried out,and the specific design parameters of these combined dies are different under the same level of circumferential stress,and the combined die is overdesigned if the thermal effect is ignored.