期刊文献+
共找到1,116篇文章
< 1 2 56 >
每页显示 20 50 100
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
1
作者 Jean-Ann James Valerie M. Thomas +2 位作者 Arka Pandit Duo Li John C. Crittenden 《Engineering》 SCIE EI 2016年第4期470-480,共11页
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po... The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings. 展开更多
关键词 combined cooling heating and power (CCHP) Air-cooled microturbines Distributed energy generation Water for energy production Net metering
下载PDF
Feasibility Analysis of the Operation Strategies for Combined Cooling, Heating and Power Systems (CCHP) based on the Energy-Matching Regime 被引量:1
2
作者 FENG Lejun DAI Xiaoye +1 位作者 MO Junrong SHI Lin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1149-1164,共16页
Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different c... Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different case studies,there are limited theoretical studies on the quantification methods to assess the feasibility of these two strategies in different load demands scenarios.Therefore,instead of a case study,we have undertaken a theoretical analysis of the suitable application scenarios for FEL and FTL strategies based on the energy-matching performance between systems'provision and users'demands.To compare the calculation models of energy saving rate(ESR)for FEL and FTL strategies in the left and right sub-regions of the energy-supply curve,a comprehensive parameter(^)that combines three inherently influential factors(off-design operation parameter,energy-matching parameter,and install capacity coefficient)is defined to determine the optimal installed capacity and feasibility of FEL or FTL strategies quantitatively.The results indicate that greater value of x contribute to a better energy saving performance,and FEL strategy shows better performance than FTL in most load demands scenarios,and the optimal installed capacity occurs when the load demand points were located in different regions of the energy-supply curve.Finally,taking a hotel in Beijing as an example,the value of the optimal install capacity coefficient is 0.845 and the FEL strategy is also suggested,and compared to the maximum install capacity,the average values of the ESR on a typical summer day,transition season,and winter can be enhanced by 3.9%,8.8%,and 1.89%,respectively. 展开更多
关键词 combined cooling heating and power systems(CCHP) energy-matching performance operation strategies comprehensive parameter energy saving performance
原文传递
Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power 被引量:4
3
作者 Feng Zhao Chenghui Zhang Bo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期385-393,共9页
This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative ... This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative optimization operation strategy of CCHP system in the cooling season, the heating season and the transition season was formulated. The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency, minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy. Furthermore, the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm. Ultimately, the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution U+0028 TOPSIS U+0029 method. A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method. The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method. The CCHP system has achieved better energy efficiency, environmental protection and economic benefits. © 2014 Chinese Association of Automation. 展开更多
关键词 CARBON cooling cooling systems Energy efficiency Energy management heating Multiobjective optimization OPTIMIZATION Pareto principle
下载PDF
A Financial Approach to Evaluate an Optimized Combined Cooling, Heat and Power System 被引量:20
4
作者 Shahab Bahrami Farahbakhsh Safe 《Energy and Power Engineering》 2013年第5期352-362,共11页
Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits su... Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated. 展开更多
关键词 combined cooling HEAT and power (CCHP) Energy HUB Optimal SIZE FINANCIAL Analysis
下载PDF
Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling,Heating and Power System
5
作者 LIU Jiejie LI Yao +1 位作者 MENG Xianyang WU Jiangtao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期931-950,共20页
The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a mult... The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system. 展开更多
关键词 combined cooling heating and power system solar-biomass multi-objective optimization life cycle assessment optimal design
原文传递
Optimization of Operation Strategies for a Combined Cooling, Heating and Power System based on Adiabatic Compressed Air Energy Storage 被引量:9
6
作者 CHEN Shang ZHU Tong +2 位作者 GAN Zhongxue ZHU Xiaojun LIU Liuchen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1135-1148,共14页
The fluctuations of renewable energy and various energy demands are crucial issues for the optimal design and operation of combined cooling,heating and power(CCHP)system.In this paper,a novel CCHP system is simulated ... The fluctuations of renewable energy and various energy demands are crucial issues for the optimal design and operation of combined cooling,heating and power(CCHP)system.In this paper,a novel CCHP system is simulated with advanced adiabatic compressed air energy storage(AA-CAES)technology as a join to connect with wind energy generation and an internal-combustion engine(ICE).The capital cost of utilities,energy cost,environmental protection cost and primary energy savings ratio(P E S R)are used as system performance indicators.To fulfill the cooling,heating and power requirements of a district and consider the thermal-electric coupling of ICE and AA-CAES in CCHP system,three operation strategies are established to schedule the dispatch of AA-CAES and ICE:ICE priority operation strategy,CAES priority operation strategy and simultaneous operation strategy.Each strategy leads the operation load of AA-CAES or ICE to improve the energy supply efficiency of the system.Moreover,to minimize comprehensive costs and maximize the P E S R,a novel optimization algorithm based on intelligent updating multi-objective differential evolution(MODE)is proposed to solve the optimization model.Considering the multi-interface characteristic and active management ability of the ICE and AA-CAES,the economic benefits and energy efficiency of the three operation strategies are compared by the simulation with the same system configuration.On a typical summer day,the simultaneous strategy is the best solution as the total cost is 3643 USD and the P E S R is 66.1%,while on a typical winter day,the ICE priority strategy is the best solution as the total cost is 4529 USD and the P E S R is 64.4%.The proposed methodology provides the CCHP based AA-CAES system with a better optimized operation. 展开更多
关键词 combined cooling heating and power(CCHP)system advanced adiabatic compressed air energy storage(AA-CAES) OPTIMIZATION
原文传递
Thermodynamic Analysis of Solid Oxide Fuel Cell Based Combined Cooling,Heating,and Power System Integrated with Solar-Assisted Electrolytic Cell 被引量:2
7
作者 GAO Yuefen YAO Wenqi +1 位作者 WANG Jiangjiang CUI Zhiheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期93-108,共16页
Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power sy... Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power system using the reversible solid oxide fuel cell assisted by solar energy to produce solar fuel and then supply energy products for users during the period without solar radiation.The system runs a solar-assisted solid oxide electrolysis cell mode and a solid oxide fuel cell mode.The thermodynamic models are constructed,and the energetic and exergetic performances are analyzed.Under the design work conditions,the SOEC mode’s overall system energy and exergy efficiencies are 19.0%and 20.5%,respectively.The electrical,energy and exergy efficiencies in the SOFC mode are 51.4%,71.3%,and 45.2%,respectively.The solid oxide fuel cell accounts for 60.0%of total exergy destruction,caused by the electrochemical reactions’thermodynamic irreversibilities.The increase of operating temperature of solid oxide fuel cell from 800℃to 1050℃rises the exergy and energy efficiencies by 11.3%and 12.3%,respectively.Its pressure from 0.2 to 0.7 MPa improves electrical efficiency by 13.8%while decreasing energy and exergy efficiencies by 5.2%and 6.0%,respectively. 展开更多
关键词 solid oxide electrolysis cell(SOEC) solid oxide fuel cell(SOFC) solar energy combined cooling heating and power(CCHP) exergy analysis
原文传递
Energetic, economic, and environmental analysis of solid oxide fuel cell-based combined cooling, heating, and power system for cancer care hospital 被引量:1
8
作者 Ahmad K.Sleiti Wahib AAl-Ammari +1 位作者 Raiha Arshad Tarek EI Mekkawy 《Building Simulation》 SCIE EI CSCD 2022年第8期1437-1454,共18页
In this study,energetic,economic,and environmental analysis of solid oxide fuel cell-based combined cooling,heating,and power(SOFC-CCHP)system is proposed for a cancer care hospital building.The energy required for th... In this study,energetic,economic,and environmental analysis of solid oxide fuel cell-based combined cooling,heating,and power(SOFC-CCHP)system is proposed for a cancer care hospital building.The energy required for the hospital power,cooling,and heating demands was obtained based on real and detailed field data,which could serve as a reference for future works in the field.These data with a 3D model for the hospital building are constructed and created in eQUEST software to precisely calculate the energy demands of the existing system(baseline case).Then,energetic,economic,and environmental models were developed to compare and assess the performance of the proposed SOFC-CCHP system.The results show that the proposed system can cover about 49% to 77% of the power demand of the hospital with an overall efficiency of 78.3%.Also,the results show that the levelized cost of electricity of the system and its payback period at the designed capacity of the SOFC is 0.087S/kWh and 10 years,respectively.Furthermore,compared to the baseline system of the hospital,the SOFC-CCHP reduces the CO_(2) emission by 89% over the year.The sensitivity analysis showed that a maximum SOFC efficiency of 52%and overall efficiency of 80%are achieved at cell operating temperature of 1027℃ and fuel utilization factor of 0.85. 展开更多
关键词 combined cooling heating and power solid oxide fuel cell hospital power demand CO_(2)emissions levelized cost of electricity(LCOE)
原文传递
A multi agent-based optimal control method for combined cooling and power systems with thermal energy storage
9
作者 Zihao Wang Chaobo Zhang +1 位作者 Hongbo Li Yang Zhao 《Building Simulation》 SCIE EI CSCD 2021年第6期1709-1723,共15页
Combined cooling,heating and power(CCHP)systems have been considered as a potential energy saving technology for buildings due to their high energy efficiency and low carbon emission.Thermal energy storage(TES)can imp... Combined cooling,heating and power(CCHP)systems have been considered as a potential energy saving technology for buildings due to their high energy efficiency and low carbon emission.Thermal energy storage(TES)can improve the energy efficiency of CCHP systems,since they reduce the mismatch between the energy supply and demand.However,it also increases the complexity of operation optimization of CCHP systems.In this study,a multi-agent system(MAS)-based optimal control method is proposed to minimize the operation cost of CCHP systems combined with TES.Four types of agents,i.e.,coordinator agents,building agents,energy management agents and optimization agents,are implemented in the MAS to cooperate with each other.The operation optimization problem is solved by the genetic algorithm.A simulated system is utilized to validate the performance of the proposed method.Results show that the operation cost reductions of 10.0%on a typical summer day and 7.7%on a typical spring day are achieved compared with a rule-based control method.A sensitivity analysis is further performed and results show that the optimal operation cost does not change obviously when the rated capacity of TES exceeds a threshold. 展开更多
关键词 multi-agent systems distributed control-operation optimization demand response combined cooling heating and power system thermal energy storage
原文传递
Liquid Air Energy Storage for Decentralized Micro Energy Networks with Combined Cooling,Heating,Hot Water and Power Supply 被引量:1
10
作者 SHE Xiaohui ZHANG Tongtong +5 位作者 PENG Xiaodong WANG Li TONG Lige LUO Yimo ZHANG Xiaosong DING Yulong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期1-17,共17页
Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range o... Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks. 展开更多
关键词 liquid air energy storage cryogenic energy storage micro energy grids combined heating cooling and power supply heat pump
原文传递
Optimized scheduling of integrated energy systems for low carbon economy considering carbon transaction costs
11
作者 Chao Liu Weiru Wang +2 位作者 Jing Li Xinyuan Liu Yongning Chi 《Global Energy Interconnection》 EI CSCD 2024年第4期377-390,共14页
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st... With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits. 展开更多
关键词 Demand response combined cooling heating and power system Carbon transaction costs Flexible electric and thermal loads Optimal scheduling
下载PDF
A Cooling System with a Fan for Thermal Management of High-Power LEDs
12
作者 Ruishan Wang Junhui Li 《Journal of Modern Physics》 2010年第3期196-199,共4页
To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature... To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature is 26oC. Results show that the temperature of the substrate of LEDs reaches 62oC without the fan, however, it reaches only 32oC when the best cooling condition appears. The temperature of the LEDs decreases by 30oC since the heat produced by LEDs is transferred rapidly by the fan. The experiment demonstrates that the cooling system with the fan has good performance. 展开更多
关键词 HIGH-power LEDS cooling System Heat DISSIPATION The FAN Data ACQUISITION CARD
下载PDF
Parametric optimization of power system for a micro-CCHP system 被引量:2
13
作者 李应林 张小松 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期297-301,共5页
The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal m... The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5. 展开更多
关键词 combined cooling heating and power distributed energy supply battery bank ENGINE
下载PDF
A Comprehensive Study of a Low-Grade Heat-Driven Cooling and Power System Based on Heat Current Method
14
作者 ZHAO Tian XU Ronghong +4 位作者 XIN Yonglin HE Kelun MA Huan YUAN Mengdi CHEN Qun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1523-1541,共19页
Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption c... Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption chiller on both driving and cooling fluid sides.The system is modeled by using the heat current method to fully consider nonlinear heat transfer and heat-work conversion constraints and resolve its behavior accurately.The off-design system simulation is performed next,showing that the fluid inlet temperatures and flow rates of cooling water as well as RORC working fluid strongly affect system performance.The off-design operation even becomes infeasible when parameters deviate from nominal values largely due to limited heat transfer capability of components,highlighting the importance of considering heat transfer constraints via heat current method.Design optimization aiming to minimize the total thermal conductance is also conducted.RORC efficiency increases by 7.9%and decreases by 12.4%after optimization,with the hot fluid inlet temperature increase from 373.15 to 403.15 K and mass flow rate ranges from 10 to 30 kg/s,emphasizing the necessity of balancing system cost and performance. 展开更多
关键词 combined cooling and power system organic Rankine cycle absorption chiller cascade heat utilization heat current method off-design analysis
原文传递
Comprehensive power-supply planning for active distribution system considering cooling,heating and power load balance 被引量:25
15
作者 Xinwei SHEN Yingduo HAN +3 位作者 Shouzhen ZHU Jinghong ZHENG Qingsheng LI Jing NONG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第4期485-493,共9页
An active distribution system power-supply planning model considering cooling,heating and power load balance is proposed in this paper.A regional energy service company is assumed to be in charge of the investment and... An active distribution system power-supply planning model considering cooling,heating and power load balance is proposed in this paper.A regional energy service company is assumed to be in charge of the investment and operation for the system in the model.The expansion of substations,building up distributed combined cooling,heating and power(CCHP),gas heating boiler(GHB)and air conditioner(AC)are included as investment planning options.In terms of operation,the load scenarios are divided into heating,cooling and transition periods.Also,the extreme load scene is included to assure the power supply reliability of the system.Numerical results demonstrate the effectiveness of the proposed model and illustrate the economic benefits of applying distributed CCHP in regional power supply on investment and operation. 展开更多
关键词 Active distribution system combined cooling heating and power(CCHP) power-supply planning Load balance
原文传递
Operation Strategy Analysis and Configuration Optimization of Solar CCHP System
16
作者 Duojin Fan Chengji Shi +1 位作者 Kai Sun Xiaojuan Lu 《Energy Engineering》 EI 2021年第4期1197-1221,共25页
This paper proposed a new type of combined cooling heating and power(CCHP)system,including the parabolic trough solar thermal(PTST)power generation and gas turbine power generation.The thermal energy storage subsystem... This paper proposed a new type of combined cooling heating and power(CCHP)system,including the parabolic trough solar thermal(PTST)power generation and gas turbine power generation.The thermal energy storage subsystem in the PTST unit provides both thermal energy and electrical energy.Based on the life cycle method,the configuration optimization under eight operation strategies is studied with the economy,energy,and environment indicators.The eight operation strategies include FEL,FEL-EC,FEL-TES,FEL-TES&EC,FTL,FTL-EC,FTL-TES,and FTL-TES&EC.The feasibility of each strategy is verified by taking a residential building cluster as an example.The indicators under the optimal configuration of each strategy are compared with that of the separate production(SP)system.The results showed that the PTST-CCHP system improves the environment and energy performance by changing the ratio of thermal energy and electric energy.The environment and energy indicators of FEL-TES&EC are superior to those of FTL-TES&EC in summer,and the results are just the opposite in winter.The initial annual investment of the PTST-CCHP system is higher than that of the SP system,but its economic performance is better than that of the SP system with the increase of life-cycle. 展开更多
关键词 combined cooling heating and power(CCHP)system trough solar thermal power generation operation strategy optimization configuration hill-climbing algorithm(HCA)
下载PDF
Optimal Operation and Size for an Energy Hub with CCHP 被引量:2
17
作者 Ali Mohammad Ranjbar Amir Moshari +1 位作者 Hashem Oraee Aras Sheikhi 《Energy and Power Engineering》 2011年第5期641-649,共9页
The interest in distributed generation has been increasing in recent years, especially due to technical devel- opment on generation systems that meet environmental and energy policy concerns. One of the most impor- ta... The interest in distributed generation has been increasing in recent years, especially due to technical devel- opment on generation systems that meet environmental and energy policy concerns. One of the most impor- tant distributed energy technologies is Combined Cooling, Heat and Power (CCHP) systems. CCHP is a small and self-contained electric, heating and cooling generation plant that can provide power for households, commercial or industrial facilities. It can reduce power loss and enhance service reliability in distribution systems. The proposed method in this paper determines the optimal size and operation of CCHP, auxiliary boiler and also heat storage unit as elements of an energy hub, for users by an integrated view of electricity and natural gas network. Authors apply cost and benefit analysis in the optimization. To confirm the proposed method, the optimum sizes of these elements are determined for a hotel in Tehran as a case study. 展开更多
关键词 combined cooling heating and power (CCHP) Cost and BENEFIT Analysis ENERGY HUB OPTIMAL Operation OPTIMAL SIZE
下载PDF
CO_(2)Plume Geothermal(CPG)Systems for Combined Heat and Power Production:an Evaluation of Various Plant Configurations 被引量:1
18
作者 SCHIFFLECHNER Christopher WIELAND Christoph SPLIETHOFF Hartmut 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第5期1266-1278,共13页
CO_(2) Plume Geothermal(CPG)systems are a promising concept for utilising petrothermal resources in the context of a future carbon capture utilisation and sequestration economy.Petrothermal geothermal energy has a tre... CO_(2) Plume Geothermal(CPG)systems are a promising concept for utilising petrothermal resources in the context of a future carbon capture utilisation and sequestration economy.Petrothermal geothermal energy has a tremendous worldwide potential for decarbonising both the power and heating sectors.This paper investigates three potential CPG configurations for combined heating and power generation(CHP).The present work examines scenarios with reservoir depths of 4 km and 5 km,as well as required district heating system(DHS)supply temperatures of 70℃ and 90℃.The results reveal that a two-staged serial CHP concept eventuates in the highest achievable net power output.For a thermosiphon system,the relative net power reduction by the CHP option compared with a sole power generation system is significantly lower than for a pumped system.The net power reduction for pumped systems lies between 62.6%and 22.9%.For a thermosiphon system with a depth of 5 km and a required DHS supply temperature of 70℃,the achievable net power by the most beneficial CHP option is even 9.2%higher than for sole power generation systems.The second law efficiency for the sole power generation concepts are in a range between 33.0%and 43.0%.The second law efficiency can increase up to 63.0%in the case of a CHP application.Thus,the combined heat and power generation can significantly increase the overall second law efficiency of a CPG system.The evaluation of the achievable revenues demonstrates that a CHP application might improve the economic performance of both thermosiphon and pumped CPG systems.However,the minimum heat revenue required for compensating the power reduction increases with higher electricity revenues.In summary,the results of this work provide valuable insights for the potential development of CPG systems for CHP applications and their economic feasibility. 展开更多
关键词 deep geothermal energy combined heat and power generation CO_(2)plume geothermal systems petrothermal resources carbon capture utilisation and storage
原文传递
Analysis and Economic Evaluation of Hourly Operation Strategy Based on MSW Classification and LNG Multi-Generation System
19
作者 Xueqing Lu Yuetao Shi Jinsong Li 《Energy Engineering》 EI 2023年第6期1325-1352,共28页
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun... In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system. 展开更多
关键词 Municipal solid waste liquefied natural gas energy recovery combined power heating and cooling determining power by heating load net electrical efficiency energy utilization efficiency
下载PDF
计及氢能高效利用和热电灵活输出的综合能源系统源荷灵活运行策略 被引量:2
20
作者 李亚莎 张永蘅 +3 位作者 陈俊璋 晏欣悦 郭玉杰 王佳敏 《广东电力》 北大核心 2024年第4期49-61,共13页
为进一步发挥氢能高效利用优势,构建绿色低碳能源系统,提出一种计及氢能高效利用和热电联产灵活输出的综合能源系统源荷灵活运行策略。首先,对源侧供能模型进行两方面改进:一是引入含风电制氢、燃气混氢、多能用氢和储氢的氢能利用模型... 为进一步发挥氢能高效利用优势,构建绿色低碳能源系统,提出一种计及氢能高效利用和热电联产灵活输出的综合能源系统源荷灵活运行策略。首先,对源侧供能模型进行两方面改进:一是引入含风电制氢、燃气混氢、多能用氢和储氢的氢能利用模型,并考虑到电解水和甲烷化反应过程中的热量散失情况,引入热量回收装置,构建计及热量回收的氢能高效利用模型;二是针对常规热电联产灵活性不足的问题,构建含电锅炉和有机朗肯循环的热电灵活输出模型,以解耦常规热电联产“以热定电”和“以电定热”限制。其次,在荷侧引入含可转移、可削减和可平移的电、热柔性负荷,以缓解电、热负荷峰谷差,并与源侧相结合,形成源荷灵活运行模型。最后,综合考虑阶梯型碳交易成本、设备运行维护成本、弃风成本以及购能成本,建立综合能源系统源荷灵活优化运行模型。采用CPLEX求解器对所提综合能源系统源荷灵活运行模型进行求解,并设置不同场景进行对比。结果表明,相比常规氢能利用模型,考虑所提计及热量回收的氢能高效利用模型时,系统的总成本、碳排放量分别降低了1.92%、4.22%,并且引入热电联产改进模型后,其总成本、碳排放量可进一步降低4.08%、7.32%,实现系统低碳、经济和灵活运行。 展开更多
关键词 氢能高效利用 热电联产 灵活输出 电、热柔性负荷 有机朗肯循环 综合能源系统
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部