期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system 被引量:2
1
作者 Jing-Lei Huang Guo-Bin Jia +3 位作者 Li-Feng Han Wen-Qian Liu Li Huang Zheng-Han Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期222-233,共12页
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol... A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability. 展开更多
关键词 Molten salt reactor combined cycle Dynamic characteristic CONTROL
下载PDF
Performance of Gas-Steam Combined Cycle Cogeneration Units Influenced by Heating Network Terminal Steam Parameters
2
作者 Guanglu Xie Zhimin Xue +5 位作者 Bo Xiong Yaowen Huang Chaoming Chen Qing Liao Cheng Yang Xiaoqian Ma 《Energy Engineering》 EI 2024年第6期1495-1519,共25页
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p... The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak. 展开更多
关键词 Gas-steam combined cycle cogeneration of heating and power steam network inverse problem operating performance
下载PDF
Thermal performance analysis of advanced partial gasification combined cycle
3
作者 肖军 章名耀 郑莆燕 《Journal of Southeast University(English Edition)》 EI CAS 2004年第2期200-204,共5页
This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed... This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed (PFB) combustion and the other two based on atmospheric circulating fluidized bed (CFB) combustion. The results show that the first scheme avoids high temperature gas filter, but has the lower cycle efficiency and syngas heating value. The second scheme can gain the highest cycle efficiency, however it is better to now lower the filter operating temperature. The third and fourth schemes, based on CFB, have lower efficiencies than the second one. But the fourth one, with preheating air/steam for gasification, can obtain the highest heating value of syngas and gain higher efficiency than the third one. 展开更多
关键词 partial gasification thermal performance combined cycle advanced pressurized fluidized bed combustion combined cycle (APFBC-CC)
下载PDF
Model Selection of Gas Turbine for Large Scale Gas-Fired Combined Cycle Power Plant
4
作者 何语平 《Electricity》 2003年第4期36-39,共4页
This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, pr... This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies. 展开更多
关键词 natural gas combined cycle power plant unit model selection
下载PDF
Hydrate-based carbon dioxide capture from simulated integrated gasification combined cycle gas 被引量:5
5
作者 Chungang Xu Xiaosen Li +1 位作者 Jing Cai Zhaoyang Chen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期501-507,共7页
The equilibrium hydrate formation conditions for CO2/H2 gas mixtures with different CO2 concentrations in 0.29 mol% TBAB aqueous solution are firstly measured.The results illustrate that the equilibrium hydrate format... The equilibrium hydrate formation conditions for CO2/H2 gas mixtures with different CO2 concentrations in 0.29 mol% TBAB aqueous solution are firstly measured.The results illustrate that the equilibrium hydrate formation pressure increases remarkably with the decrease of CO2 concentration in the gas mixture.Based on the phase equilibrium data,a three stages hydrate CO2 separation from integrated gasification combined cycle (IGCC) synthesis gas is investigated.Because the separation efficiency is quite low for the third hydrate separation,a hybrid CO2 separation process of two hydrate stages in conjunction with one chemical absorption process (absorption with MEA) is proposed and studied.The experimental results show H2 concentration in the final residual gas released from the three stages hydrate CO2 separation process was approximately 95.0 mol% while that released from the hybrid CO2 separation process was approximately 99.4 mol%.Thus,the hybrid process is possible to be a promising technology for the industrial application in the future. 展开更多
关键词 integrated gasification combined cycle (IGCC) gas hydrate CO2 separation H2 purification chemical absorption
下载PDF
Thermodynamic analysis and combined cycle research on recoverable pressure energy in natural gas pipeline 被引量:2
6
作者 郑斌 刘俊德 《Journal of Beijing Institute of Technology》 EI CAS 2011年第1期65-70,共6页
Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produc... Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produced from capturing the pressure energy has been calculated. Based on the comprehensive thermodynamic analysis, two systems have been proposed to capture pressure energy of natural gas to generate electricity. In this study, the expression of exergy is given which can be used in evaluating purposes. A problem with this multidisciplinary study is the complicated boundary condition. In conclusion, a technical prospect on recoverable natural gas pressure energy has been presented based on total energy system theory. 展开更多
关键词 natural gas pressure energy thermodynamic analysis exergy analysis power genera-tion combined cycle total energy system
下载PDF
Assessment of Site Parameters and Heat Recovery Characteristics on Combined Cycle Performance in an Equatorial Environment 被引量:1
7
作者 Sidum Adumene Samson Nitonye 《World Journal of Engineering and Technology》 2016年第2期313-324,共12页
This paper investigates the effects of site based parameters such as ambient temperature, humidity, altitude and heat transfer characteristic of a dual pressure heat recovery system on the performance of the combined ... This paper investigates the effects of site based parameters such as ambient temperature, humidity, altitude and heat transfer characteristic of a dual pressure heat recovery system on the performance of the combined cycle power plant within an equatorial environment. The bulk heat utilization and configuration of a dual pressure heat recovery system are investigated. It is observed that the heat system configuration play a vital role in optimizing the combined cycle overall performance, which has proportionality relationship with the operating ambient temperature and relative humidity of the gas turbine. The investigation is carried out within the ambient temperature range of 24℃ to 35℃, relative humidity of 60% to 80%, and a high level steam pressure of 60 bar to 110 bar. The results show that at 24℃ ambient temperature, the heat recovery system has the highest duty of 239.4 MW, the optimum combined cycle power output of 205.52 MW, and overall efficiency of 47.46%. It further indicates that as the ambient temperature increases at an average exhaust gas temperature of 530℃ and mass flow of 470 kg/s, the combined cycle power output and efficiency decrease by 15.5% and 13.7% respectively under the various considerations. This results from a drop in the air and exhaust mass flow as the values of the site parameters increase. The overall results indicate that decreasing the ambient temperature at optimum exhaust gas flow and temperature increases the heat recovery system heat duty performance, the steam generation, overall combined cycle power output and efficiency, which satisfies the research objective. 展开更多
关键词 Gas-Turbine Ambient Temperature Humidity combined cycle EFFICIENCY Power Output HRSG
下载PDF
Parameters and Trajectory Overall Optimization Design of the Combined Cycle Engine Reusable Launch Vehicle 被引量:1
8
作者 CUI Naigang ZHAO Lina +1 位作者 HUANG Rong WEI Changzhu 《Aerospace China》 2016年第4期14-20,共7页
Reusable launch vehicle is an important way to realize fast,cheap and reliable space transportation.A combined cycle engine system provides a more efficient and flexible form of power.The investigation on the research... Reusable launch vehicle is an important way to realize fast,cheap and reliable space transportation.A combined cycle engine system provides a more efficient and flexible form of power.The investigation on the research status of the combined cycle engine technology,including basic principle,research programs and classification of structure is firstly discussed in this paper.Then the bilevel hierarchical and integrated parameters/trajectory overall optimization technologies are applied to improve the efficiency and effectiveness of overall vehicle design.Simulations are implemented to compare and analyze the effectiveness and adaptability of the two algorithms,in order to provide the technical reserves and beneficial references for further research on combined cycle engine reusable launch vehicles. 展开更多
关键词 Reusable launch vehicle combined cycle engine Bilevel hierarchical Integrated Parameters/trajectory overall optimization
下载PDF
DESIGN OF COMBINED CYCLE GENERATION SYSTEM WITH HIGH TEMPERATURE FUEL CELL AND STEAM TURBINE
9
作者 YuLijun YuanJunqi CaoGuangyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期289-291,共3页
For environment protection and high efficiency, development of new conceptpower plant has been required in China. The fuel cell is expected to be used in a power plant as acentralized power Station or distributed powe... For environment protection and high efficiency, development of new conceptpower plant has been required in China. The fuel cell is expected to be used in a power plant as acentralized power Station or distributed power plant. It is a chemical power generation device thatconverts the energy of a chemical reaction directly into electrical energy and not limited by Carnotcycle efficiency. The molten carbonate fuel cell (MCFC) power plant has several attractive featuresi.e. high efficiency and lower emission of NO_x and SO_x A combined cycle generation system withMCFC and steam turbine is designed. Its net electrical efficiency LHV is about 55 percent. 展开更多
关键词 combined cycle IG-MCFC Power plant Coal gasification
下载PDF
Energy Efficiency of a Simulated Synthetic Natural Gas Combined Cycle (SNGCC)
10
作者 Asfaw Gezae Daful Zin Eddine Dadach 《Journal of Power and Energy Engineering》 2021年第3期42-53,共12页
The objective of this investigation is to analyze the impact of the flue gas recirculation (FGR) ratio on the different energy inputs and outputs of a SNGCC power plant as well as its overall efficiency. Simulation re... The objective of this investigation is to analyze the impact of the flue gas recirculation (FGR) ratio on the different energy inputs and outputs of a SNGCC power plant as well as its overall efficiency. Simulation results indicate that increasing flue gas recirculation increases the energy consumed by the recirculation compressor and the energy produced by the gas turbine. On the other hand, it decreases the production of energy of the steam turbine and the energy consumed by the pump of the steam cycle. The overall energy efficiency of the SNGCC power plant is highest (41.09%) at a value of 0.20 of the flue gas recirculation. However, the flue gas composition with a FGR ratio of 0.37 is more suitable for effective absorption of carbon dioxide by amine solutions. Based on the low heating value (LHV) of hydrogen, the corresponding overall efficiency of the power plant is 39.18% and the net power output of the plant is 1273 kW for consumption of 97.5 kg/hr. of hydrogen. 展开更多
关键词 Synthetic Natural Gas combined cycle SNGCC Energy Efficiency
下载PDF
Thermodynamic Performance Analysis of E/F/H-Class Gas Turbine Combined Cycle with Exhaust Gas Recirculation and Inlet/Variable Guide Vane Adjustment under Part-Load Conditions
11
作者 LI Keying CHI Jinling +1 位作者 WANG Bo ZHANG Shijie 《Journal of Thermal Science》 SCIE EI CSCD 2024年第1期348-367,共20页
Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effective... Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effectively improving the part-load(i.e.,off-design) performance of the gas turbine combined cycle(GTCC).In this study,the E-,F-,and H-Class EGR-GTCC design and off-design system models were established and validated to perform a comparative analysis of the part-load performance under the EGR-IGV-FFC and conventional IGV-FFC strategies in the E/F/H-Class GTCC.Results show that EGR-IGV-FFC has considerable potential for the part-load performance enhancement and can show a higher combined cycle efficiency than IGV-FFC in the E-,F-,and H-Class GTCCs.However,the part-load performance improvement in the corresponding GTCC was weakened for the higher class of the gas turbine because of the narrower load range of EGR action and the deterioration of the gas turbine performance.Furthermore,EGR-IGV-FFC was inferior to IGV-FFC in improving the performance at loads below 50% for the H-Class GTCC.The results obtained in this paper could help guide the application of EGR-IGV-FFC to enhance the part-load performance of various classes of GTCC systems. 展开更多
关键词 E/F/H-Class gas turbine combined cycle performance improvement part-load conditions exhaust gas recirculation inlet/variable guide vane
原文传递
Performance Improvement of Combined Cycle Power Plant Based on the Optimization of the Bottom Cycle and Heat Recuperation 被引量:3
12
作者 Wenguo XIANG Yingying CHEN 《Journal of Thermal Science》 SCIE EI CAS CSCD 2007年第1期84-89,共6页
Many F class gas turbine combined cycle (GTCC) power plants are built in China at present because of less emission and high efficiency. It is of great interest to investigate the efficiency improvement of GTCC plant... Many F class gas turbine combined cycle (GTCC) power plants are built in China at present because of less emission and high efficiency. It is of great interest to investigate the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam generator (HRSG) is selected for study in this paper. In order to maximize the GTCC efficiency, the optimization of the HRSG operating parameters is performed. The operating parameters are determined by means of a thermodynamic analysis, i.e. the minimization of exergy losses. The influence of HRSG inlet gas temperature on the steam bottoming cycle efficiency is discussed. The result shows that increasing the HRSG inlet temperature has less improvement to steam cycle efficiency when it is over 590℃. Partial gas to gas recuperation in the topping cycle is studied. Joining HRSG optimization with the use of gas to gas heat recuperation, the combined plant efficiency can rise up to 59.05% at base load. In addition, the part load performance of the GTCC power plant gets much better. The efficiency is increased by 2.11% at 75% load and by 4.17% at 50% load. 展开更多
关键词 Heat Recovery Steam Generators (HRSG) Thermodynamic optimization Exergy analysis combined cycle power plant EFFICIENCY Heat rate
原文传递
Unsteady flow characteristic analysis of turbine based combined cycle(TBCC)inlet mode transition10.1016/j.jppr.2015.07.006 被引量:5
13
作者 Jun Liu Huacheng Yuan Rongwei Guo 《Propulsion and Power Research》 SCIE 2015年第3期141-149,共9页
A turbine based combined cycle(TBCC)propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition,at which point,the propulsion system performs a“mode tr... A turbine based combined cycle(TBCC)propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition,at which point,the propulsion system performs a“mode transition”from the turbine to ramjet engine.Smooth inlet mode transition is accomplished when flow is diverted from one flowpath to the other,without experiencing unstart or buzz.The smooth inlet mode transition is a complex unsteady process and it is one of the enabling technologies for combined cycle engine to become a functional reality.In order to unveil the unsteady process of inlet mode transition,the research of over/under TBCC inlet mode transition was conducted through a numerical simulation.It shows that during the mode transition the terminal shock oscillates in the inlet.During the process of inlet mode transition mass flow rate and Mach number of turbojet flowpath reduce with oscillation.While in ramjet flowpath the flow field is non-uniform at the beginning of inlet mode transition.The speed of mode transition and the operation states of the turbojet and ramjet engines will affect the motion of terminal shock.The result obtained in present paper can help us realize the unsteady flow characteristic during the mode transition and provide some suggestions for TBCC inlet mode transition based on the smooth transition of thrust. 展开更多
关键词 Airbreathing hypersonic vehicle Turbine based combined cycle(TBCC) Inlet mode transition Unsteady numerical simulation Shock oscillation
原文传递
Analysis of a Coal Fired Combined Cycle with Carried-Heat Gasification 被引量:3
14
作者 XuXiangdong F.N.Fett 《Journal of Thermal Science》 SCIE EI CAS CSCD 1994年第4期217-224,共8页
In the research of a more efficient, leSS costly, more environmentally responsible and less technically difficult method for generating electrical power from coal, the Carried-heat Gasilication Combined Cycle (CGCC) i... In the research of a more efficient, leSS costly, more environmentally responsible and less technically difficult method for generating electrical power from coal, the Carried-heat Gasilication Combined Cycle (CGCC) is introduced by Tsinghua University. The high efficiency cycle includes carried-heat partial gasilication, compressed air heating in a fiuidized bed immersed air heater followed by a combustor and the heat recovery of gas turbine exhaust used as the combustion air for the differential-velocity atmospheric circulating fluidized bed (DFBC). Superheat steam is raised in the DFBC boiler. The comparison of results identifies the causes of performance difference between eight cases. Features of the cycle ensure a high coal conversion efficiency within current state of the art. 展开更多
关键词 carried-heat gasification combined cycle differential-velocity fluidized bed compressed air heater.
原文传递
Prediction of combined cycle fatigue life of TC11 alloy based on modified nonlinear cumulative damage model 被引量:2
15
作者 Zhenhua ZHAO Kainan LU +2 位作者 Lingfeng WANG Lulu LIU Wei CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第7期73-84,共12页
The nonlinear cumulative damage model is modified to have high prediction accuracy when the high-low cycle stress frequency ratio m is large(m500).The low cycle fatigue(LCF)tests,high cycle fatigue(HCF)tests and combi... The nonlinear cumulative damage model is modified to have high prediction accuracy when the high-low cycle stress frequency ratio m is large(m500).The low cycle fatigue(LCF)tests,high cycle fatigue(HCF)tests and combined high and low cycle fatigue(CCF)tests of TC11 titanium alloy were carried out,and the influencing factors of CCF life were analysed.The CCF life declines with the decrease of the ratio of high-low cycle stress frequency m.Both linear and nonlinear cumulative damage models are used to predict the CCF life.The CCF life prediction error of the linear cumulative damage model is great and the predictions tend to be overestimated,which is dangerous for engineering application.The accuracy is relatively high when the high-low cycle stress frequency ratio m500.The accuracy of nonlinear cumulative damage model is higher than that of linear model when the high-low cycle stress frequency ratio m500.Based on the relationship between high cycle average stress rmajor and material yield limit rp,0.2,a correction term is added to the nonlinear cumulative damage model and verified,which made the modified model more accurate when m500. 展开更多
关键词 combined cycle Damage accumulation High-cycle fatigue Low-cycle fatigue Prediction method
原文传递
Off-design performance of a chemical looping combustion (CLC) combined cycle:effects of ambient temperature 被引量:2
16
作者 Jinling Chi Bo Wang +1 位作者 Shijie Zhang Yunhan Xiao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第1期87-96,共10页
The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion(CLC) combined cycle.A sensitivity analysis of the CLC reacto... The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion(CLC) combined cycle.A sensitivity analysis of the CLC reactor system was conducted,which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor.For the ambient temperature variation,three off-design control strategies have been assumed and compared:1) without any Inlet Guide Vane(IGV) control,2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature,aside from fuel flow rate adjusting.Results indicate that,compared with the conventional combined cycle,due to the requirement of pressure balance at outlet of the two CLC reactors,CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted.For the first control strategy,temperatures of the two CLC reactors both rise obviously as ambient temperature increases.IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point.Compare with the second strategy,the third would induce more severe decrease of efficiency and output power of the CLC combined cycle. 展开更多
关键词 Chemical looping combustion combined cycle Off-design performance Thermodynamic analysis Ambient temperature
原文传递
Economics and Performance Forecast of Gas Turbine Combined Cycle 被引量:2
17
作者 张小桃 椙下秀昭 +1 位作者 倪维斗 李政 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第5期633-636,共4页
Forecasts of the various types of gas turbines economics and performance of gas turbine combined cycle (GTCC) with will help power plant designers to select the best type of gas turbine for future Chinese powerplant... Forecasts of the various types of gas turbines economics and performance of gas turbine combined cycle (GTCC) with will help power plant designers to select the best type of gas turbine for future Chinese powerplants. The cost and performance of various designs were estimated using the commercial software GT PRO. Improved GTCC output will increase the system efficiency which may induce total investment and will certainly increase the cumulative cash which then will induce the cost and the payback period. The relative annual fuel output increases almost in proportion to the relative GTCC output. China should select the gas turbine that provides the most economical output according to its specific conditions. The analysis shows that a GTCC power plant with a medium-sized 100 to 200 MW output gas turbine is the most suitable for Chinese investors. 展开更多
关键词 cumulative cash flow relative owner's cost relative years for payback relative annual fueloutput gas turbine combined cycle (GTCC) gas turbine
原文传递
Identifying Critical Components of Combined Cycle Power Plants for Implementation of Reliability-centered Maintenance 被引量:2
18
作者 Hamed Sabouhi Mahmud Fotuhi-Firuzabad Payman Dehghanian 《CSEE Journal of Power and Energy Systems》 SCIE 2016年第2期87-97,共11页
Maintenance scheduling and asset management practices play an important role in power systems,specifically in power generating plants.This paper presents a novel riskbased framework for a criticality assessment of pla... Maintenance scheduling and asset management practices play an important role in power systems,specifically in power generating plants.This paper presents a novel riskbased framework for a criticality assessment of plant components as a means to conduct more focused maintenance activities.Critical components in power plants that influence overall system performance are identified by quantifying their failure impact on system reliability,electric safety,cost,and the environment.Prioritization of plant components according to the proposed risk-based method ensures that the most effective and techno-economic investment decisions are implemented.This,in turn,helps to initiate modern maintenance approaches,such as reliability-centered maintenance(RCM).The proposed method is applied to a real combined cycle power plant(CCPP)in Iran,composed of two gas turbine power plants(GTPP)and one steam turbine power plant(STPP).The results demonstrate the practicality and applicability of the presented approach in real world practices. 展开更多
关键词 combined cycle power plant(CCPP) critical component gas turbine power plant(GTPP) reliability-centered maintenance(RCM) RISK safety steam turbine power plant(STPP)
原文传递
The Development of Coke Carried-Heat Gasification Coal-Fired Combined Cycle
19
作者 LiZhao XiangdongXu 《Journal of Thermal Science》 SCIE EI CAS CSCD 1999年第4期270-276,共7页
Carried-Heat Partial Gasification Combined cycle is a novel combined cycle which was proposed by Thermal Engineering Department of Tsinghua University in 1992. The idea of the system comes from the situation that the ... Carried-Heat Partial Gasification Combined cycle is a novel combined cycle which was proposed by Thermal Engineering Department of Tsinghua University in 1992. The idea of the system comes from the situation that the efficiency of the power plants in China is much lower than that of the advanced countries, but the coal consumption is much higher, which brings about the waste of primary energy resources and the pollution of the environment. With the deep study of the gasification technology, Coke Carried-Heat Gasification Coal-Fired Combined Cycle, as the improved system, came into birth in 1996 based on the partial gasification one. At the end of 1997, a new cycle scheme similar to IGCC was created. This paper focuses on several classes combined cycle put forward by Tsinghua University, depending on the plant configuration and carbon conversion, making the solution a viable and attractive option for efficient coal utilization. 展开更多
关键词 combined cycle carried heat gasification. Received 1999.
原文传递
Performance analysis of ammonia-water absorption/compression combined refrigeration cycle 被引量:1
20
作者 鲍帅阳 杜垲 +2 位作者 蔡星辰 牛晓峰 武云龙 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期60-67,共8页
In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis ... In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle. 展开更多
关键词 AMMONIA-WATER ABSORPTION compression refrigeration combined refrigeration cycle coefficient of performance COP
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部