Combined shear-compression tests and simulations were performed on a closed-cell aluminum foam over a wide range of loading angles in order to probe their yield behaviors under biaxial loading conditions.Combined shea...Combined shear-compression tests and simulations were performed on a closed-cell aluminum foam over a wide range of loading angles in order to probe their yield behaviors under biaxial loading conditions.Combined shear-compression tests were carried out by using a pair of cylindrical bars with beveled ends.The yield surfaces were experimentally measured and compared with various theoretical yield surface models.The cellular structures of closed-cell aluminum foams were modeled as tetrakaidecahedrons and their biaxial crushing behaviors were simulated by the finite element method.The results show that,yield initiates from the stress-concentrated corners in the specimens under combined shear-compression loading and the stress distribution is no longer uniform at the specimen/bar interfaces.In the range of cell sizes studied,the larger the foam cell size is,the higher the yield stress is.Aluminum foam density is found to be the dominant factor on its mechanical properties compared with the cell size and is much more significant in engineering practice.展开更多
Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,...Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,i.e.,the moment ratio of torsion to bending(γ)and the aspect ratio(column length-to-depth ratio,φ),were prepared for the experiment.In this study,the failure process,torsion-displacement hysteresis curves,and flexure-displacement hysteresis curves were obtained.The failure characteristics,mechanical behavior of specimens such as the failure patterns,hysteresis curves,rigidity degradation,ductility and energy dissipation,are analyzed.The experimental research indicated that the major failures of the specimens were bending failure,bending-shear failure and bending-torsion failure as the moment ratio of torsion to bending(γ)increased.The torsion-displacement hysteresis curves were pinched in the middle,formed a slip platform,and the phenomenon of“load drop”occurred after the peak load.The bending-displacement hysteresis curves were plump,which showed that bending capacity of the specimen was better than its torsion capacity.Additionally,the energy dissipation of the specimen was dominated by torsion in the early stage and ultimately governed by the bending moment in the later phase.Test results also indicated that the displacement ductility coefficient and interstory rotation angle of the failure point were less than 3.0 and 1/50,respectively,which means the test specimen performance does not meet the requirement of the Chinese Code for Seismic Design of Buildings(GB 50011-2014)in this respect.展开更多
Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex...Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex combination of the conditional expectations of PTT-below and PTT-excess travel times. The former was designed as a risk-optimistic travel time index, and the latter was a risk-pessimistic one. Hence, CMTT was able to describe various routing risk-attitudes. The central idea of CMTT was comprehensively illustrated and the difference among the existing travel time indices was analyzed. The Wardropian combined mean traffic equilibrium(CMTE) model was formulated as a variational inequality and solved via an alternating direction algorithm nesting extra-gradient projection process. Some mathematical properties of CMTT and CMTE model were rigorously proved. Finally, a numerical example was performed to characterize the CMTE network. It is founded that that risk-pessimism is of more benefit to a modest(or low) congestion and risk network, however, it changes to be risk-optimism for a high congestion and risk network.展开更多
An analytical model for the propagation of combined stress waves in a functionally graded thin-walled tube subjected to combined longitudinal and torsional impact loading is established.The material properties of the ...An analytical model for the propagation of combined stress waves in a functionally graded thin-walled tube subjected to combined longitudinal and torsional impact loading is established.The material properties of the tube are assumed to be continuously graded along the length according to a power law function with respect to the volume fractions of the constituents.The generalized characteristic theory is used to analyze the main features of the characteristic wave speeds and simple wave solutions in the functionally graded thin-walled tube.The finite difference method is used to discretize the governing equations.Two types of typical solutions are obtained for the functionally graded tube and the homogeneous tube subjected to combined longitudinal and torsional step loading.The numerical results reveal some abnormal phenomena in the stress path and wave process of the functionally graded thin-walled tube.展开更多
Based on the problem that the service entity only has the partial field of vision in the network environment,a trust evolvement method of the macro self-organization for Web service combination was proposed.In the met...Based on the problem that the service entity only has the partial field of vision in the network environment,a trust evolvement method of the macro self-organization for Web service combination was proposed.In the method,the control rule of the trust degree in the Dempster-Shafer(D-S)rule was utilized based on the entity network interactive behavior,and a proportion trust control rule was put up.The control rule could make the Web service self-adaptively study so as to gradually form a proper trust connection with its cooperative entities and to improve the security performance of the whole system.The experimental results show that the historical successful experience is saved during the service combination alliance,and the method can greatly improve the reliability and success rate of Web service combination.展开更多
A combined-cycle power plant (CCPP) is broadly utilized in many countries to cover energy demand due to its higher efficiency than other conventional power plants. The performance of a CCPP is highly sensitive to ambi...A combined-cycle power plant (CCPP) is broadly utilized in many countries to cover energy demand due to its higher efficiency than other conventional power plants. The performance of a CCPP is highly sensitive to ambient air temperature (AAT) and the generated power varies widely during the year with temperature fluctuations. To have an accurate estimation of power generation, it is necessary to develop a model to predict the average monthly power of a CCPP considering ambient temperature changes. In the present work, the Monte Carlo (MC) method was used to obtain the average generated power of a CCPP. The case study was a combined-cycle power plant in Tehran, Iran. The region’s existing meteorological data shows significant fluctuations in the annual ambient temperature, which severely impact the performance of the mentioned plant, causing a stochastic behavior of the output power. To cope with this stochastic nature, the probability distribution of monthly outdoor temperature for 2020 was determined using the maximum likelihood estimation (MLE) method to specify the range of feasible inputs. Furthermore, the plant was accurately simulated in THERMOFLEX to capture the generated power at different temperatures. The MC method was used to couple the ambient temperature fluctuations to the output power of the plant, modeled by THERMOFLEX. Finally, the mean value of net power for each month and the average output power of the system were obtained. The results indicated that each unit of the system generates 436.3 MW in full load operation. The average deviation of the modeling results from the actual data provided by the power plant was an estimated 3.02%. Thus, it can be concluded that this method helps achieve an estimation of the monthly and annual power of a combined-cycle power plant, which are effective indexes in the economic analysis of the system.展开更多
The thermo-economic performance of a gas turbine is simulated using a fish bone technique to characterize the major equipment failure causes.Moreover a fault tree analysis and a Pareto technique are implemented to ide...The thermo-economic performance of a gas turbine is simulated using a fish bone technique to characterize the major equipment failure causes.Moreover a fault tree analysis and a Pareto technique are implemented to identify the related failure modes,and the percentage and frequency of failures,respectively.A pump 101 and drier 301 belonging to the Tabriz Petrochemical Company are considered for such analysis,which is complemented with a regression method to determine a behavioral model of this equipment over a twenty-year period.Research findings indicate that 81%of major failure factors in production equipment are related to the executive procedures(24%),human error(22%),poor quality of materials and parts(20%),and lack of personnel training(15%).展开更多
传统交通规划模型以单一交通方式为对象,无法评估现阶段多模式组合出行的系统运行效益。基于BEAM(Behavior,Energy,Autonomy and Mobility)智能体仿真模型,探究居民多模式交通组合出行的动态演化及减碳治理策略的综合效益。结果表明:BEA...传统交通规划模型以单一交通方式为对象,无法评估现阶段多模式组合出行的系统运行效益。基于BEAM(Behavior,Energy,Autonomy and Mobility)智能体仿真模型,探究居民多模式交通组合出行的动态演化及减碳治理策略的综合效益。结果表明:BEAM模型能够较好地反映居民多模式交通组合出行特征,如慢行-公交多模式交通占比约25.1%,与实际出行方式分担率基本一致。同时,探究多模式交通组合出行次数及出行距离随时间的演化过程,分析多模式交通通勤出行特征。此外,计算模式转移的减碳效益:每降低1%小汽车使用比例,交通碳排放总量可降低7%,人均日碳排放量减少约0.14kg。展开更多
Textile-reinforced concrete (TRC) is a new high performance cementitious composite material,which not only has superior corrosion resistance but also can effectively limit the development of concrete cracks and make t...Textile-reinforced concrete (TRC) is a new high performance cementitious composite material,which not only has superior corrosion resistance but also can effectively limit the development of concrete cracks and make the crack width and spacing of concrete become smaller.However,due to the brittle feature of fiber materials,the TRC structural member has no distinct failure symptom when it arrives at its ultimate load.At the same time,ordinary reinforced concrete (RC) elements have large dead weight and can not efficiently restrict the expansion of the main crack of structures because of the restriction of their special cover thickness.In order to overcome the disadvantages of both the TRC and the RC,a new architecture reinforced with textile-combined steel is proposed in this study,making full use of the advantages of the above two structures.The cover concrete at the tension zone of an RC element is partially replaced with TRC and thus the steel reinforcements replaced with textiles are subtracted.Compared with the old one,the new structure has less dead weight and has the merits of service safety and good durability.The flexural development process of the proper beam with this new structure is investigated in this paper and based on the plane section assumption,analytical equations are derived by using nonlinear analysis theory,including the load-carrying capacity at different stages and moment-curvature relationship and mid-span deflection during the entire loading process.Comparison between the calculated and the experimental results reveals satisfactory agreement and thus verifies the feasibility of the equations.展开更多
基金Project(2017JJ3359)supported by the Natural Science Foundation of Hunan Province,ChinaProject(KFJJ13-11M)supported by the Opening Project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology),China.
文摘Combined shear-compression tests and simulations were performed on a closed-cell aluminum foam over a wide range of loading angles in order to probe their yield behaviors under biaxial loading conditions.Combined shear-compression tests were carried out by using a pair of cylindrical bars with beveled ends.The yield surfaces were experimentally measured and compared with various theoretical yield surface models.The cellular structures of closed-cell aluminum foams were modeled as tetrakaidecahedrons and their biaxial crushing behaviors were simulated by the finite element method.The results show that,yield initiates from the stress-concentrated corners in the specimens under combined shear-compression loading and the stress distribution is no longer uniform at the specimen/bar interfaces.In the range of cell sizes studied,the larger the foam cell size is,the higher the yield stress is.Aluminum foam density is found to be the dominant factor on its mechanical properties compared with the cell size and is much more significant in engineering practice.
基金National Natural Science Foundation of China under Grant Nos.51268004 and 51578163Natural Science Foundation of Guangxi under Grant No 2016GXNSFDA380032Bagui Scholar Program of Guangxi under Grant No:[2019]79。
文摘Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,i.e.,the moment ratio of torsion to bending(γ)and the aspect ratio(column length-to-depth ratio,φ),were prepared for the experiment.In this study,the failure process,torsion-displacement hysteresis curves,and flexure-displacement hysteresis curves were obtained.The failure characteristics,mechanical behavior of specimens such as the failure patterns,hysteresis curves,rigidity degradation,ductility and energy dissipation,are analyzed.The experimental research indicated that the major failures of the specimens were bending failure,bending-shear failure and bending-torsion failure as the moment ratio of torsion to bending(γ)increased.The torsion-displacement hysteresis curves were pinched in the middle,formed a slip platform,and the phenomenon of“load drop”occurred after the peak load.The bending-displacement hysteresis curves were plump,which showed that bending capacity of the specimen was better than its torsion capacity.Additionally,the energy dissipation of the specimen was dominated by torsion in the early stage and ultimately governed by the bending moment in the later phase.Test results also indicated that the displacement ductility coefficient and interstory rotation angle of the failure point were less than 3.0 and 1/50,respectively,which means the test specimen performance does not meet the requirement of the Chinese Code for Seismic Design of Buildings(GB 50011-2014)in this respect.
基金Project(2012CB725403-5)supported by National Basic Research Program of ChinaProject(71131001-2)supported by National Natural Science Foundation of China+1 种基金Projects(2012JBZ005)supported by Fundamental Research Funds for the Central Universities,ChinaProject(201170)supported by the Foundation for National Excellent Doctoral Dissertation of China
文摘Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex combination of the conditional expectations of PTT-below and PTT-excess travel times. The former was designed as a risk-optimistic travel time index, and the latter was a risk-pessimistic one. Hence, CMTT was able to describe various routing risk-attitudes. The central idea of CMTT was comprehensively illustrated and the difference among the existing travel time indices was analyzed. The Wardropian combined mean traffic equilibrium(CMTE) model was formulated as a variational inequality and solved via an alternating direction algorithm nesting extra-gradient projection process. Some mathematical properties of CMTT and CMTE model were rigorously proved. Finally, a numerical example was performed to characterize the CMTE network. It is founded that that risk-pessimism is of more benefit to a modest(or low) congestion and risk network, however, it changes to be risk-optimism for a high congestion and risk network.
文摘An analytical model for the propagation of combined stress waves in a functionally graded thin-walled tube subjected to combined longitudinal and torsional impact loading is established.The material properties of the tube are assumed to be continuously graded along the length according to a power law function with respect to the volume fractions of the constituents.The generalized characteristic theory is used to analyze the main features of the characteristic wave speeds and simple wave solutions in the functionally graded thin-walled tube.The finite difference method is used to discretize the governing equations.Two types of typical solutions are obtained for the functionally graded tube and the homogeneous tube subjected to combined longitudinal and torsional step loading.The numerical results reveal some abnormal phenomena in the stress path and wave process of the functionally graded thin-walled tube.
基金Project(60673169)supported by the National Natural Science Foundation of China
文摘Based on the problem that the service entity only has the partial field of vision in the network environment,a trust evolvement method of the macro self-organization for Web service combination was proposed.In the method,the control rule of the trust degree in the Dempster-Shafer(D-S)rule was utilized based on the entity network interactive behavior,and a proportion trust control rule was put up.The control rule could make the Web service self-adaptively study so as to gradually form a proper trust connection with its cooperative entities and to improve the security performance of the whole system.The experimental results show that the historical successful experience is saved during the service combination alliance,and the method can greatly improve the reliability and success rate of Web service combination.
文摘A combined-cycle power plant (CCPP) is broadly utilized in many countries to cover energy demand due to its higher efficiency than other conventional power plants. The performance of a CCPP is highly sensitive to ambient air temperature (AAT) and the generated power varies widely during the year with temperature fluctuations. To have an accurate estimation of power generation, it is necessary to develop a model to predict the average monthly power of a CCPP considering ambient temperature changes. In the present work, the Monte Carlo (MC) method was used to obtain the average generated power of a CCPP. The case study was a combined-cycle power plant in Tehran, Iran. The region’s existing meteorological data shows significant fluctuations in the annual ambient temperature, which severely impact the performance of the mentioned plant, causing a stochastic behavior of the output power. To cope with this stochastic nature, the probability distribution of monthly outdoor temperature for 2020 was determined using the maximum likelihood estimation (MLE) method to specify the range of feasible inputs. Furthermore, the plant was accurately simulated in THERMOFLEX to capture the generated power at different temperatures. The MC method was used to couple the ambient temperature fluctuations to the output power of the plant, modeled by THERMOFLEX. Finally, the mean value of net power for each month and the average output power of the system were obtained. The results indicated that each unit of the system generates 436.3 MW in full load operation. The average deviation of the modeling results from the actual data provided by the power plant was an estimated 3.02%. Thus, it can be concluded that this method helps achieve an estimation of the monthly and annual power of a combined-cycle power plant, which are effective indexes in the economic analysis of the system.
文摘The thermo-economic performance of a gas turbine is simulated using a fish bone technique to characterize the major equipment failure causes.Moreover a fault tree analysis and a Pareto technique are implemented to identify the related failure modes,and the percentage and frequency of failures,respectively.A pump 101 and drier 301 belonging to the Tabriz Petrochemical Company are considered for such analysis,which is complemented with a regression method to determine a behavioral model of this equipment over a twenty-year period.Research findings indicate that 81%of major failure factors in production equipment are related to the executive procedures(24%),human error(22%),poor quality of materials and parts(20%),and lack of personnel training(15%).
文摘传统交通规划模型以单一交通方式为对象,无法评估现阶段多模式组合出行的系统运行效益。基于BEAM(Behavior,Energy,Autonomy and Mobility)智能体仿真模型,探究居民多模式交通组合出行的动态演化及减碳治理策略的综合效益。结果表明:BEAM模型能够较好地反映居民多模式交通组合出行特征,如慢行-公交多模式交通占比约25.1%,与实际出行方式分担率基本一致。同时,探究多模式交通组合出行次数及出行距离随时间的演化过程,分析多模式交通通勤出行特征。此外,计算模式转移的减碳效益:每降低1%小汽车使用比例,交通碳排放总量可降低7%,人均日碳排放量减少约0.14kg。
基金support from the Key Program of the National Natural Science Foundation of China (Grant No.50438010)
文摘Textile-reinforced concrete (TRC) is a new high performance cementitious composite material,which not only has superior corrosion resistance but also can effectively limit the development of concrete cracks and make the crack width and spacing of concrete become smaller.However,due to the brittle feature of fiber materials,the TRC structural member has no distinct failure symptom when it arrives at its ultimate load.At the same time,ordinary reinforced concrete (RC) elements have large dead weight and can not efficiently restrict the expansion of the main crack of structures because of the restriction of their special cover thickness.In order to overcome the disadvantages of both the TRC and the RC,a new architecture reinforced with textile-combined steel is proposed in this study,making full use of the advantages of the above two structures.The cover concrete at the tension zone of an RC element is partially replaced with TRC and thus the steel reinforcements replaced with textiles are subtracted.Compared with the old one,the new structure has less dead weight and has the merits of service safety and good durability.The flexural development process of the proper beam with this new structure is investigated in this paper and based on the plane section assumption,analytical equations are derived by using nonlinear analysis theory,including the load-carrying capacity at different stages and moment-curvature relationship and mid-span deflection during the entire loading process.Comparison between the calculated and the experimental results reveals satisfactory agreement and thus verifies the feasibility of the equations.