i) Instead of x ̄n+ y ̄n = z ̄n ,we use as the general equation of Fermat's Last Theorem (FLT),where a and b are two arbitrary natural numbers .By means of binomial expansion ,(0.1) an be written as Because a ̄...i) Instead of x ̄n+ y ̄n = z ̄n ,we use as the general equation of Fermat's Last Theorem (FLT),where a and b are two arbitrary natural numbers .By means of binomial expansion ,(0.1) an be written as Because a ̄r-(-b) ̄r always contains a +b as its factor ,(0.2) can be written as where φ_r =[a ̄r-(-b) ̄r]/ (a+b ) are integers for r=1 . 2, 3. ...n (ii) Lets be a factor of a+b and let (a +b) = se. We can use x= sy to transform (0.3 ) to the following (0.4)(iii ) Dividing (0.4) by s ̄2 we have On the left side of (0.5) there is a polynomial of y with integer coefficient and on the right side there is a constant cφ/s .If cφ/s is not an integer ,then we cannot find an integer y to satisfy (0.5), and then FLT is true for this case. If cφ_n/s is an integer ,we may change a and c such the cφ_n/s≠an integer .展开更多
文摘i) Instead of x ̄n+ y ̄n = z ̄n ,we use as the general equation of Fermat's Last Theorem (FLT),where a and b are two arbitrary natural numbers .By means of binomial expansion ,(0.1) an be written as Because a ̄r-(-b) ̄r always contains a +b as its factor ,(0.2) can be written as where φ_r =[a ̄r-(-b) ̄r]/ (a+b ) are integers for r=1 . 2, 3. ...n (ii) Lets be a factor of a+b and let (a +b) = se. We can use x= sy to transform (0.3 ) to the following (0.4)(iii ) Dividing (0.4) by s ̄2 we have On the left side of (0.5) there is a polynomial of y with integer coefficient and on the right side there is a constant cφ/s .If cφ/s is not an integer ,then we cannot find an integer y to satisfy (0.5), and then FLT is true for this case. If cφ_n/s is an integer ,we may change a and c such the cφ_n/s≠an integer .