期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical simulation on the seismic performance of retrofitted masonry walls based on the combined finite-discrete element method 被引量:1
1
作者 Wu Biye Dai Junwu +2 位作者 Jin Huan Bai Wen Chen Bowen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期777-805,共29页
Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method us... Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting. 展开更多
关键词 masonry wall external steel-meshed mortar layer combined finite-discrete element method hysteretic curve ultimate bearing capacity
下载PDF
Anisotropic shearing mechanism of Kangding slate:Experimental investigation and numerical analysis
2
作者 Ping Liu Quansheng Liu +4 位作者 Penghai Deng Yucong Pan Yiming Lei Chenglei Du Xianqi Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第5期1487-1504,共18页
The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly ... The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly affected by the foliation angles.Direct shear tests were conducted on cubic slate samples with foliation angles of 0°,30°,45°,60°,and 90°.The effect of foliation angles on failure patterns,acoustic emission(AE)characteristics,and shear strength parameters was analyzed.Based on AE characteristics,the slate failure process could be divided into four stages:quiet period,step-like increasing period,dramatic increasing period,and remission period.A new empirical expression of cohesion for layered rock was proposed,which was compared with linear and sinusoidal cohesion expressions based on the results made by this paper and previous experiments.The comparative analysis demonstrated that the new expression has better prediction ability than other expressions.The proposed empirical equation was used for direct shear simulations with the combined finite-discrete element method(FDEM),and it was found to align well with the experimental results.Considering both computational efficiency and accuracy,it was recommended to use a shear rate of 0.01 m/s for FDEM to carry out direct shear simulations.To balance the relationship between the number of elements and the simulation results in the direct shear simulations,the recommended element size is 1 mm. 展开更多
关键词 Anisotropy Empirical expression of cohesion foliation angles combined finite-discrete element method(FDEM) Shear rate element size
下载PDF
Development on astable multivibrators using the combination of linear and non-linear materials as switching elements based on all optial method
3
作者 Nandita Mitra Sourangshu Mukhopadhyay 《Optoelectronics Letters》 EI 2009年第2期101-103,共3页
In this communication we propose a method to implement an all-optical astable multivibrator using the non-linear material based switches and logic gates. The scheme can operate in real time. The delay time can achieve... In this communication we propose a method to implement an all-optical astable multivibrator using the non-linear material based switches and logic gates. The scheme can operate in real time. The delay time can achieve ps(pico-second). The pulse duration can be made very low and may cross the THz easily by selecting proper material and laser source. 展开更多
关键词 Development on astable multivibrators using the combination of linear and non-linear materials as switching elements based on all optial method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部