In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high con...In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high content of MgO and CaO as the feedstock.Several experimental parameters such as chlorine flow and reaction temperature were discussed and the morphology and components of reaction product were analyzed.According to the results,the conversion rate of TiO2 is up to 90%.It is found that the combined fluidized bed has good anti-agglomeration ability because the accumulation of MgCl2 and CaCl2 on the surface of unreacted slag was carried out of the reactor.展开更多
This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by mo...This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by molten CaCl2 and MgCl2. The combined fluidized bed consists of at least a riser tube and a semi-circulating fluidized bed. Two kinds of high titanium slag, in which the total mass content of CaO and MgO is 2.03% and 9.09% respectively, are employed to examine the anti-agglomeration effect and the conversion of the materials when the temperature ranges are between 923.15K and 1073.15K, gas apparent velocity 0.7--1.1m.s-1, and inlet amount of solid materials is 4.6-7.0kg·h^-1. It is found that the anti-agglomeration effect in the combined fluidized bed is satisfactory and the new method can achieve a TiCl4 production capacity of 14.0-75.4t·m^-2·d^-1 in relation to 25.0-- 40.0t·m^-2·d^-1 from the conventional bubble bed. Furthermore, low-temperature chloridization, for example, at 923K or 973K, can also be used to produce TiCl4 and avoid agglomeration.展开更多
This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed...This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed (PFB) combustion and the other two based on atmospheric circulating fluidized bed (CFB) combustion. The results show that the first scheme avoids high temperature gas filter, but has the lower cycle efficiency and syngas heating value. The second scheme can gain the highest cycle efficiency, however it is better to now lower the filter operating temperature. The third and fourth schemes, based on CFB, have lower efficiencies than the second one. But the fourth one, with preheating air/steam for gasification, can obtain the highest heating value of syngas and gain higher efficiency than the third one.展开更多
To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet, a cold model was developed for the integrated riser reactor combining the gas-solid distributor with the fluidi...To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet, a cold model was developed for the integrated riser reactor combining the gas-solid distributor with the fluidized bed. Constraints, related to the gas-solid distributor and the upper fluidized bed, imposed on the particle flow in the riser outlet region, were investigated experimentally. The experimental results showed that with increasing superficial gas velocity, these constraints have strong influences on particle flow behavior, the particle circulation flux in the riser, and the height of the static bed material of the upper fluidized bed. When the constraints have greater prominence, the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases, the rate of decrease being proportional to the constraint strength. Along the radial direction of the outlet section, the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then, with increasing constraint strength, gradually extends to the whole section from the inner wall. Based on the experimental data, an empirical model describing the constraint strength was established. The average relative error of the model is within 7.69%.展开更多
基金Project(2008AA06Z1071) supported by the National High-Tech Research and Development Program of ChinaProject(20306030) supported by the National Natural Science Foundation of China
文摘In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high content of MgO and CaO as the feedstock.Several experimental parameters such as chlorine flow and reaction temperature were discussed and the morphology and components of reaction product were analyzed.According to the results,the conversion rate of TiO2 is up to 90%.It is found that the combined fluidized bed has good anti-agglomeration ability because the accumulation of MgCl2 and CaCl2 on the surface of unreacted slag was carried out of the reactor.
基金Supported by the National Natural Science Foundation of China (No.20306030) and China Postdoctoral Science Foundation (No.2003033240).
文摘This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by molten CaCl2 and MgCl2. The combined fluidized bed consists of at least a riser tube and a semi-circulating fluidized bed. Two kinds of high titanium slag, in which the total mass content of CaO and MgO is 2.03% and 9.09% respectively, are employed to examine the anti-agglomeration effect and the conversion of the materials when the temperature ranges are between 923.15K and 1073.15K, gas apparent velocity 0.7--1.1m.s-1, and inlet amount of solid materials is 4.6-7.0kg·h^-1. It is found that the anti-agglomeration effect in the combined fluidized bed is satisfactory and the new method can achieve a TiCl4 production capacity of 14.0-75.4t·m^-2·d^-1 in relation to 25.0-- 40.0t·m^-2·d^-1 from the conventional bubble bed. Furthermore, low-temperature chloridization, for example, at 923K or 973K, can also be used to produce TiCl4 and avoid agglomeration.
文摘This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed (PFB) combustion and the other two based on atmospheric circulating fluidized bed (CFB) combustion. The results show that the first scheme avoids high temperature gas filter, but has the lower cycle efficiency and syngas heating value. The second scheme can gain the highest cycle efficiency, however it is better to now lower the filter operating temperature. The third and fourth schemes, based on CFB, have lower efficiencies than the second one. But the fourth one, with preheating air/steam for gasification, can obtain the highest heating value of syngas and gain higher efficiency than the third one.
基金support from the National Natural Science Foundation of China(Grant nos.21106028 and 20976190)the Hebei Province Natural Science Foundation of China(Grant no.B2013202125)
文摘To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet, a cold model was developed for the integrated riser reactor combining the gas-solid distributor with the fluidized bed. Constraints, related to the gas-solid distributor and the upper fluidized bed, imposed on the particle flow in the riser outlet region, were investigated experimentally. The experimental results showed that with increasing superficial gas velocity, these constraints have strong influences on particle flow behavior, the particle circulation flux in the riser, and the height of the static bed material of the upper fluidized bed. When the constraints have greater prominence, the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases, the rate of decrease being proportional to the constraint strength. Along the radial direction of the outlet section, the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then, with increasing constraint strength, gradually extends to the whole section from the inner wall. Based on the experimental data, an empirical model describing the constraint strength was established. The average relative error of the model is within 7.69%.