By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser be...By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.展开更多
A scheme for beam combination at any angles employing a specially designed multilayer grating is proposed. Such a grating is able to convert noncoaxial laser beams to coaxial ones, and the combined beams are able to o...A scheme for beam combination at any angles employing a specially designed multilayer grating is proposed. Such a grating is able to convert noncoaxial laser beams to coaxial ones, and the combined beams are able to output along the normal line of the grating. The intensity and the phase structure of combined beams call also be controlled. The experiments are carried out by loading all encoded grating on a liquid-crystal spatial light modu- lator. The results agree well with the simulations. This method of beam combination with a multilayer grating serw-s to simplify the complexity of beam combination.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474257 and 61605183
文摘By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.
基金supported by the National Basic Research Program of China(973 Program)(No.2014CB340002)the Graduate Technological Innovation Project of Beijing Institute of Technology(No.2017CX10003)
文摘A scheme for beam combination at any angles employing a specially designed multilayer grating is proposed. Such a grating is able to convert noncoaxial laser beams to coaxial ones, and the combined beams are able to output along the normal line of the grating. The intensity and the phase structure of combined beams call also be controlled. The experiments are carried out by loading all encoded grating on a liquid-crystal spatial light modu- lator. The results agree well with the simulations. This method of beam combination with a multilayer grating serw-s to simplify the complexity of beam combination.