To manage a large amount of flexible distributed energy resources(DERs)in the distribution networks,the virtual power plant(VPP)is introduced into the industry.The VPP can optimally dispatch these resources in a clust...To manage a large amount of flexible distributed energy resources(DERs)in the distribution networks,the virtual power plant(VPP)is introduced into the industry.The VPP can optimally dispatch these resources in a cluster manner and provide flexibility for the power system operation as a whole.Most existing studies formulate the equivalent power flexibility of the aggregating DERs as deterministic optimization models without considering their uncertainties.In this paper,we introduce the stochastic power flexibility range(PFR)and timecoupling flexibility(TCF)to describe the power flexibility of VPP.In this model,both operational constraints and the randomness of the DERs’output are incorporated,and a combined model and data-driven solution is proposed to obtain the stochastic PFR,TCF,and cost function of VPP.The aggregating model can be easily incorporated into the optimization model for the power system operator or market bidding,considering uncertainties.Finally,a numerical test is performed.The results show that the proposed model not only has higher computational efficiency than the scenario-based methods but also achieves more economic benefits.展开更多
A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of ...A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of VPPs and ever-growing heat demand of consumers, managing the effect of fluctuations in the amount of available renewable resources on the operation of VPPs and maintaining an economical supply of electric power and heat energy to users have been important issues. This paper proposes the allocation of an electric boiler to realize wind power directly converted for supplying heat, which can not only overcome the limitation of beat output from a combined heat and power (CHP) unit, but also reduce carbon emissions from a VPP. After the electric boiler is considered in the VPP operation model of the combined heat and power system, a multi-objective model is built, which includes the costs of carbon emissions, total operation of the VPP and the electricity traded between the VPP and the main grid. The model is solved by the CPLEX package using the fuzzy membership function in Matlab, and a case study is presented. The power output of each unit in the case study is analyzed under four scenarios. The results show that after carbon emission is taken into account, the output of low carbon units is significantly increased, and the allocation of an electric boiler can facilitate the maximum absorption of renewable energy, which also reduces carbon emissions from the VPP.展开更多
A new waste heat recovery system is presented to recover exhausted steam waste heat from the steam turbine by absorption heat pump(AHP) in a gas-steam combined cycle(GSCC) power plant. The system can decrease energy c...A new waste heat recovery system is presented to recover exhausted steam waste heat from the steam turbine by absorption heat pump(AHP) in a gas-steam combined cycle(GSCC) power plant. The system can decrease energy consumption and further improve the energy utilization. The performance evaluation criteria are calculated, and exergy analysis for key components are implemented in terms of the energy and exergy analysis theory. Besides, the change of these criteria is also revealed before and after modification. The net power output approximately increases by 21738 kW, and equivalent coal consumption decreases by 5.58 g/kWh. A 1.81% and 1.92% increase in the thermal and exergy efficiency is respectively obtained in the new integrated system as the heating load is 401095 kJ at 100% condition. Meanwhile, the appropriate extraction parameters for heating have been also analyzed in the two systems. The proposed scheme can not only save energy consumption but also reduce emission and gain great economic benefit, which is proven to be a huge potential for practical application.展开更多
Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power i...Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power industry, is the main source for fossil energy consumption and CO_(2)emissions. Since solvent-based post-combustion carbon capture technology would bring massive extra energy consumption, the application of solar-assisted carbon capture technology has attracted extensive attention. Due to the important role of coal-fired combined heat and power plants for serving residential and industrial heating districts, in this paper, the low-carbon operation benefits of combined heat and power integrated plants based on solar-assisted carbon capture(CHPIP-SACC) are fully evaluated in heat and power integrated energy system with a high proportion of wind power. Based on the selected integration scheme, a linear operation model of CHPIP-SACC is developed considering energy flow characteristics and thermal coupling interaction of its internal modules. From the perspective of system-level operation optimization, the day-ahead economic dispatch problem based on a mix-integer linear programming model is presented to evaluate the low-carbon benefits of CHPIP-SACC during annual operation simulation. The numerical simulations on a modified IEEE 39-bus system demonstrate the effectiveness of CHPIP-SACC for reducing CO_(2)emissions as well as increasing the downward flexibility. The impact of different solar field areas and unit prices of coal on the low-carbon operation benefits of CHPIP-SACC is studied in the section of sensitivity analysis.展开更多
Many F class gas turbine combined cycle (GTCC) power plants are built in China at present because of less emission and high efficiency. It is of great interest to investigate the efficiency improvement of GTCC plant...Many F class gas turbine combined cycle (GTCC) power plants are built in China at present because of less emission and high efficiency. It is of great interest to investigate the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam generator (HRSG) is selected for study in this paper. In order to maximize the GTCC efficiency, the optimization of the HRSG operating parameters is performed. The operating parameters are determined by means of a thermodynamic analysis, i.e. the minimization of exergy losses. The influence of HRSG inlet gas temperature on the steam bottoming cycle efficiency is discussed. The result shows that increasing the HRSG inlet temperature has less improvement to steam cycle efficiency when it is over 590℃. Partial gas to gas recuperation in the topping cycle is studied. Joining HRSG optimization with the use of gas to gas heat recuperation, the combined plant efficiency can rise up to 59.05% at base load. In addition, the part load performance of the GTCC power plant gets much better. The efficiency is increased by 2.11% at 75% load and by 4.17% at 50% load.展开更多
热电联产(combined heat and power,CHP)机组与虚拟电厂(virtual power plant,VPP)结合,可以有效提高能源利用效率,增强电力系统运行的可靠性及稳定性。为保证CHP-VPP灵活、低碳、经济运行,文中提出一种聚合风电、光伏、CHP机组、锅炉...热电联产(combined heat and power,CHP)机组与虚拟电厂(virtual power plant,VPP)结合,可以有效提高能源利用效率,增强电力系统运行的可靠性及稳定性。为保证CHP-VPP灵活、低碳、经济运行,文中提出一种聚合风电、光伏、CHP机组、锅炉、碳捕集设备、燃气轮机、燃料电池、储能及电、热负荷的综合能源VPP,并在参与电-热-旋转备用-碳等多市场下,研究其低碳经济协同调度问题。首先,以各时刻VPP在多市场下整体净收益最大为目标,建立其CHP-VPP两阶段鲁棒优化调度模型;然后,考虑新能源出力、市场价格及负荷的不确定性,利用蒙特卡洛法进行场景削减,从而降低系统风险,增强其鲁棒性;最后,采用列与约束生成算法对模型进行求解,得到最恶劣场景下系统运行的经济性最优调度方案。仿真结果表明:所提综合能源VPP结构合理,可通过动态调整碳捕集设备及储能电池,达到平抑新能源出力波动的效果,从而实现碳排放的大幅降低;所提调度策略可有效保证源-荷-储多侧电、热资源的协同优化运行,提高VPP的灵活性、经济性和低碳性。展开更多
基金supported in part by the National Natural Science Foundation of China under Grant U2066601,51725703Southern Power Grid Technical Project GDKJXM20185069(032000KK52180069).
文摘To manage a large amount of flexible distributed energy resources(DERs)in the distribution networks,the virtual power plant(VPP)is introduced into the industry.The VPP can optimally dispatch these resources in a cluster manner and provide flexibility for the power system operation as a whole.Most existing studies formulate the equivalent power flexibility of the aggregating DERs as deterministic optimization models without considering their uncertainties.In this paper,we introduce the stochastic power flexibility range(PFR)and timecoupling flexibility(TCF)to describe the power flexibility of VPP.In this model,both operational constraints and the randomness of the DERs’output are incorporated,and a combined model and data-driven solution is proposed to obtain the stochastic PFR,TCF,and cost function of VPP.The aggregating model can be easily incorporated into the optimization model for the power system operator or market bidding,considering uncertainties.Finally,a numerical test is performed.The results show that the proposed model not only has higher computational efficiency than the scenario-based methods but also achieves more economic benefits.
文摘A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of VPPs and ever-growing heat demand of consumers, managing the effect of fluctuations in the amount of available renewable resources on the operation of VPPs and maintaining an economical supply of electric power and heat energy to users have been important issues. This paper proposes the allocation of an electric boiler to realize wind power directly converted for supplying heat, which can not only overcome the limitation of beat output from a combined heat and power (CHP) unit, but also reduce carbon emissions from a VPP. After the electric boiler is considered in the VPP operation model of the combined heat and power system, a multi-objective model is built, which includes the costs of carbon emissions, total operation of the VPP and the electricity traded between the VPP and the main grid. The model is solved by the CPLEX package using the fuzzy membership function in Matlab, and a case study is presented. The power output of each unit in the case study is analyzed under four scenarios. The results show that after carbon emission is taken into account, the output of low carbon units is significantly increased, and the allocation of an electric boiler can facilitate the maximum absorption of renewable energy, which also reduces carbon emissions from the VPP.
基金supported by National Natural Science Foundation of China No. 51274224the China Scholarship Council (CSC) (No. 201706440092)
文摘A new waste heat recovery system is presented to recover exhausted steam waste heat from the steam turbine by absorption heat pump(AHP) in a gas-steam combined cycle(GSCC) power plant. The system can decrease energy consumption and further improve the energy utilization. The performance evaluation criteria are calculated, and exergy analysis for key components are implemented in terms of the energy and exergy analysis theory. Besides, the change of these criteria is also revealed before and after modification. The net power output approximately increases by 21738 kW, and equivalent coal consumption decreases by 5.58 g/kWh. A 1.81% and 1.92% increase in the thermal and exergy efficiency is respectively obtained in the new integrated system as the heating load is 401095 kJ at 100% condition. Meanwhile, the appropriate extraction parameters for heating have been also analyzed in the two systems. The proposed scheme can not only save energy consumption but also reduce emission and gain great economic benefit, which is proven to be a huge potential for practical application.
基金supported in part by the National Natural Science Foundation of China (No. 51977087)in part by the Science and Technology Project of State Grid Corporation of China (No. 1400-202199550A-0-5-ZN)。
文摘Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power industry, is the main source for fossil energy consumption and CO_(2)emissions. Since solvent-based post-combustion carbon capture technology would bring massive extra energy consumption, the application of solar-assisted carbon capture technology has attracted extensive attention. Due to the important role of coal-fired combined heat and power plants for serving residential and industrial heating districts, in this paper, the low-carbon operation benefits of combined heat and power integrated plants based on solar-assisted carbon capture(CHPIP-SACC) are fully evaluated in heat and power integrated energy system with a high proportion of wind power. Based on the selected integration scheme, a linear operation model of CHPIP-SACC is developed considering energy flow characteristics and thermal coupling interaction of its internal modules. From the perspective of system-level operation optimization, the day-ahead economic dispatch problem based on a mix-integer linear programming model is presented to evaluate the low-carbon benefits of CHPIP-SACC during annual operation simulation. The numerical simulations on a modified IEEE 39-bus system demonstrate the effectiveness of CHPIP-SACC for reducing CO_(2)emissions as well as increasing the downward flexibility. The impact of different solar field areas and unit prices of coal on the low-carbon operation benefits of CHPIP-SACC is studied in the section of sensitivity analysis.
文摘Many F class gas turbine combined cycle (GTCC) power plants are built in China at present because of less emission and high efficiency. It is of great interest to investigate the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam generator (HRSG) is selected for study in this paper. In order to maximize the GTCC efficiency, the optimization of the HRSG operating parameters is performed. The operating parameters are determined by means of a thermodynamic analysis, i.e. the minimization of exergy losses. The influence of HRSG inlet gas temperature on the steam bottoming cycle efficiency is discussed. The result shows that increasing the HRSG inlet temperature has less improvement to steam cycle efficiency when it is over 590℃. Partial gas to gas recuperation in the topping cycle is studied. Joining HRSG optimization with the use of gas to gas heat recuperation, the combined plant efficiency can rise up to 59.05% at base load. In addition, the part load performance of the GTCC power plant gets much better. The efficiency is increased by 2.11% at 75% load and by 4.17% at 50% load.
文摘热电联产(combined heat and power,CHP)机组与虚拟电厂(virtual power plant,VPP)结合,可以有效提高能源利用效率,增强电力系统运行的可靠性及稳定性。为保证CHP-VPP灵活、低碳、经济运行,文中提出一种聚合风电、光伏、CHP机组、锅炉、碳捕集设备、燃气轮机、燃料电池、储能及电、热负荷的综合能源VPP,并在参与电-热-旋转备用-碳等多市场下,研究其低碳经济协同调度问题。首先,以各时刻VPP在多市场下整体净收益最大为目标,建立其CHP-VPP两阶段鲁棒优化调度模型;然后,考虑新能源出力、市场价格及负荷的不确定性,利用蒙特卡洛法进行场景削减,从而降低系统风险,增强其鲁棒性;最后,采用列与约束生成算法对模型进行求解,得到最恶劣场景下系统运行的经济性最优调度方案。仿真结果表明:所提综合能源VPP结构合理,可通过动态调整碳捕集设备及储能电池,达到平抑新能源出力波动的效果,从而实现碳排放的大幅降低;所提调度策略可有效保证源-荷-储多侧电、热资源的协同优化运行,提高VPP的灵活性、经济性和低碳性。