In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from ...In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.展开更多
Underground coal mining in the U.S. is conducted in numerous regions where previous workings exist above and/or below an actively mined seam. Miners know that overlying or underlying fully extracted coal areas, also k...Underground coal mining in the U.S. is conducted in numerous regions where previous workings exist above and/or below an actively mined seam. Miners know that overlying or underlying fully extracted coal areas, also known as gob regions, can result in abutment stresses that affect the active mining. If there was no full extraction, and the past mining consists entirely of intact pillars, the stresses on the active seam are usually minimal. However, experience has shown that in some situations there has been sufficient yielding in overlying or underlying pillar systems to cause stress transfer to the adjoining larger pillars or barriers, which in turn, transfer significant stresses onto the workings of the active seam. In other words, the overlying or underlying pillar system behaves as a ‘‘pseudo gob." The presence of a pseudo gob is often unexpected, and the consequences can be severe. This paper presents several case histories, summarized briefly below, that illustrate pseudo gob phenomenon:(1) pillar rib degradation at a West Virginia mine at 335 m depth that contributed to a rib roll fatality,(2) pillar rib deterioration at a Western Kentucky mine at 175 m depth that required pillar size adjustment and installation of supplemental bolting,(3) roof deterioration at an eastern Kentucky mine at 400 m depth that stopped mine advance and required redirecting the section development,(4) coal burst on development at an eastern Kentucky mine at 520 m depth that had no nearby pillar recovery, and(5) coal burst on development at a West Virginia mine at the relatively shallow depth of 335 m that also had no nearby pillar recovery. The paper provides guidance so that when an operation encounters a potential pseudo gob stress interaction the hazard can be mitigated based on an understanding of the mechanism encountered.展开更多
Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding roc...Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts.展开更多
文摘In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.
文摘Underground coal mining in the U.S. is conducted in numerous regions where previous workings exist above and/or below an actively mined seam. Miners know that overlying or underlying fully extracted coal areas, also known as gob regions, can result in abutment stresses that affect the active mining. If there was no full extraction, and the past mining consists entirely of intact pillars, the stresses on the active seam are usually minimal. However, experience has shown that in some situations there has been sufficient yielding in overlying or underlying pillar systems to cause stress transfer to the adjoining larger pillars or barriers, which in turn, transfer significant stresses onto the workings of the active seam. In other words, the overlying or underlying pillar system behaves as a ‘‘pseudo gob." The presence of a pseudo gob is often unexpected, and the consequences can be severe. This paper presents several case histories, summarized briefly below, that illustrate pseudo gob phenomenon:(1) pillar rib degradation at a West Virginia mine at 335 m depth that contributed to a rib roll fatality,(2) pillar rib deterioration at a Western Kentucky mine at 175 m depth that required pillar size adjustment and installation of supplemental bolting,(3) roof deterioration at an eastern Kentucky mine at 400 m depth that stopped mine advance and required redirecting the section development,(4) coal burst on development at an eastern Kentucky mine at 520 m depth that had no nearby pillar recovery, and(5) coal burst on development at a West Virginia mine at the relatively shallow depth of 335 m that also had no nearby pillar recovery. The paper provides guidance so that when an operation encounters a potential pseudo gob stress interaction the hazard can be mitigated based on an understanding of the mechanism encountered.
基金This paper was supported by the Natural Science Foundation of Jiangsu Higher Education Institutions(No.20KJB440002)the National Natural Science Foundation of China(Project Nos.51804129,51808246 and 51904112)+5 种基金China Postdoctoral Science Foundation(No.2020M671301)the Postdoctoral Science Foundation of Jiangsu Province(Nos.2019K139 and 2019Z107)the Huai’an Science and Technology Plan project(No.HAB201836)the Industry Education Research Cooperation Projects in Jiangsu Province(No.BY2020007)Undergraduate Innovation and Entrepreneurship Training Program(No.202011049111XJ)the Foundation of Huaiyin Institute of Technology(No.Z301B20530).
文摘Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts.