In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow ...In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.展开更多
For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention....For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.展开更多
The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of N...The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage, water supply and eco-environment protection is broken up, these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained. In the light of the conflict of water drainage, water supply and eco-environment protection in a typical sector in Jiaozuo coal mine, a case study puts forward an optimum combination scheme, in which a maximum economic benefit objective is constrained by multiple factors. The scheme provides a very important scientific base for finding a sustainable development strategy.展开更多
The geological condition of coalfield is much complex in China. With increasing in mining depth and drainage amount, the contradiction of drainage, water supply and environ-mental protection is becoming more and more ...The geological condition of coalfield is much complex in China. With increasing in mining depth and drainage amount, the contradiction of drainage, water supply and environ-mental protection is becoming more and more serious. However, the contradiction can be solved by the scientific management of optimizing combination of drainage, water supply and environ-mental protection. The Philip multiple objectives simplex method used in this article has searched for a possible solution at the first step, and then it goes on searching to find out whether there is a weight number that can lead the solution to the biggest. It can reduce the randomness and diffi-culty of traditional weight method which determine the weight number artificially. Some beneficial coefficients are vague and the number is larger in the model of water resource dispatch. So the vague layer analysis method can consider these vague factors fully, combining the qualitative and quantitative analysis together. Especially, this method can quantify the experiential judge-ment of policy decider, and it will turn to be more suitable if the structure of objective factors is complex or the necessary data are absent. In the paper, the two methods above are used to solve the plans of drainage, water supply and optimizing distribution of water resource in the Zhengzhou mining district.展开更多
Water quality deterioration often occurs in secondary water supply systems(SWSSs), and increased heavy metal concentrations can be a serious problem. In this survey, twelve residential neighborhoods were selected to i...Water quality deterioration often occurs in secondary water supply systems(SWSSs), and increased heavy metal concentrations can be a serious problem. In this survey, twelve residential neighborhoods were selected to investigate the influence of SWSSs on the seasonal changes in heavy metal concentrations from input water to tank and tap water. The concentrations of nine evaluated heavy metals in all groups of water samples were found to be far below the specified standard levels in China. The concentrations of Fe, Mn, and Zn increased significantly from the input water samples to the tank and tap water samples in spring and summer( p < 0.05), especially for the water samples that had been stagnant for a long time. Negative correlations were found between most of the heavy metals and residual chlorine(Fe, Cu, Zn, and As, r =-0.186 to-0.519, p < 0.05). In particular, a high negative correlation was observed between Fe and residual chlorine( r =-0.489 to-0.519, p < 0.01) in spring and summer. Fe and Mn displayed positive correlations with turbidity( r = 0.672 and 0.328, respectively;p < 0.05). In addition, Cr and As were found to be positively associated with some nutrients(NO, TN, and SO;r = 0.420-0.786, p < 0.01). The material of the storage tanks had little influence on the difference in heavy metal concentrations. Overall, this survey illustrated that SWSSs may pose a chronic threat to water quality and could provide useful information for practitioners.展开更多
基金Project (No. 50078048) supported by the National Natural Science Foundation of China
文摘In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.
基金supported by the National Natural Science Foundation of China(Grants No.52179062 and 51879087).
文摘For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.
文摘The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage, water supply and eco-environment protection is broken up, these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained. In the light of the conflict of water drainage, water supply and eco-environment protection in a typical sector in Jiaozuo coal mine, a case study puts forward an optimum combination scheme, in which a maximum economic benefit objective is constrained by multiple factors. The scheme provides a very important scientific base for finding a sustainable development strategy.
文摘The geological condition of coalfield is much complex in China. With increasing in mining depth and drainage amount, the contradiction of drainage, water supply and environ-mental protection is becoming more and more serious. However, the contradiction can be solved by the scientific management of optimizing combination of drainage, water supply and environ-mental protection. The Philip multiple objectives simplex method used in this article has searched for a possible solution at the first step, and then it goes on searching to find out whether there is a weight number that can lead the solution to the biggest. It can reduce the randomness and diffi-culty of traditional weight method which determine the weight number artificially. Some beneficial coefficients are vague and the number is larger in the model of water resource dispatch. So the vague layer analysis method can consider these vague factors fully, combining the qualitative and quantitative analysis together. Especially, this method can quantify the experiential judge-ment of policy decider, and it will turn to be more suitable if the structure of objective factors is complex or the necessary data are absent. In the paper, the two methods above are used to solve the plans of drainage, water supply and optimizing distribution of water resource in the Zhengzhou mining district.
基金supported by the National Natural Science Foundation of China (Nos. 41861144023, U2005206)Xiamen Municipal Bureau of Science and Technology (No. YDZX20203502000003)。
文摘Water quality deterioration often occurs in secondary water supply systems(SWSSs), and increased heavy metal concentrations can be a serious problem. In this survey, twelve residential neighborhoods were selected to investigate the influence of SWSSs on the seasonal changes in heavy metal concentrations from input water to tank and tap water. The concentrations of nine evaluated heavy metals in all groups of water samples were found to be far below the specified standard levels in China. The concentrations of Fe, Mn, and Zn increased significantly from the input water samples to the tank and tap water samples in spring and summer( p < 0.05), especially for the water samples that had been stagnant for a long time. Negative correlations were found between most of the heavy metals and residual chlorine(Fe, Cu, Zn, and As, r =-0.186 to-0.519, p < 0.05). In particular, a high negative correlation was observed between Fe and residual chlorine( r =-0.489 to-0.519, p < 0.01) in spring and summer. Fe and Mn displayed positive correlations with turbidity( r = 0.672 and 0.328, respectively;p < 0.05). In addition, Cr and As were found to be positively associated with some nutrients(NO, TN, and SO;r = 0.420-0.786, p < 0.01). The material of the storage tanks had little influence on the difference in heavy metal concentrations. Overall, this survey illustrated that SWSSs may pose a chronic threat to water quality and could provide useful information for practitioners.