In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment cou...In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment could present an ecotoxicological risk for biocenosis. The aim of the INVASION project is to assess the potential ecotoxicological impact of a combined sewer overflow (CSO) on a peri-urban stream. A comparative study between upstream and downstream areas of the CSO allowed observing significant effects of this overflow on the river. We studied three layers of stream: surface water, benthic layer and hyporheic layer. To characterize the potential ecotoxicological risk of water and sediments, we used a battery of 4 bioassays: Daphnia magna, Vibrio fischeri, Brachionus calyciflorus and Heterocypris incongruens. In parallel, we measured the physico-chemical parameters: ammonium (NH4+), chromium (Cr), copper (Cu) and lead (Pb). An ecological risk is greatest for the hyporheic zone in downstream river, particularly for the solid phase. These results corroborated with the physico-chemical data obtained.展开更多
Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also kn...Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well- developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst pertbrmance tor high intensity and long durataon events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term controlstrategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event,展开更多
文摘In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment could present an ecotoxicological risk for biocenosis. The aim of the INVASION project is to assess the potential ecotoxicological impact of a combined sewer overflow (CSO) on a peri-urban stream. A comparative study between upstream and downstream areas of the CSO allowed observing significant effects of this overflow on the river. We studied three layers of stream: surface water, benthic layer and hyporheic layer. To characterize the potential ecotoxicological risk of water and sediments, we used a battery of 4 bioassays: Daphnia magna, Vibrio fischeri, Brachionus calyciflorus and Heterocypris incongruens. In parallel, we measured the physico-chemical parameters: ammonium (NH4+), chromium (Cr), copper (Cu) and lead (Pb). An ecological risk is greatest for the hyporheic zone in downstream river, particularly for the solid phase. These results corroborated with the physico-chemical data obtained.
文摘Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well- developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst pertbrmance tor high intensity and long durataon events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term controlstrategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event,