期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Fabrication of Fe–TiC–Al_2O_3 composites on the surface of steel using a TiO_2–Al–C–Fe combustion reaction induced by gas tungsten arc cladding
1
作者 Mahmood Sharifitabar Jalil Vahdati Khaki Mohsen Haddad Sabzevar 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期193-204,共12页
The aim of the present study was to fabricate Fe-TiC-Al2O3 composites on the surface of medium carbon steel.For this purpose,TiO2-3C and 3TiO2-4Al-3C-xFe(0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surfac... The aim of the present study was to fabricate Fe-TiC-Al2O3 composites on the surface of medium carbon steel.For this purpose,TiO2-3C and 3TiO2-4Al-3C-xFe(0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate.The mixtures and substrate were then melted using a gas tungsten arc cladding process.The results show that the martensite forms in the layer produced by the TiO2-3C mixture.However,ferrite-Fe3C-TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2-4Al-3C mixture.The addition of Fe to the TiO2-4Al-3C reactants with the content from 0 to 20wt%increases the volume fraction of particles,and a composite containing approximately 9vol%TiC and A12O3 particles forms.This composite substantially improves the substrate hardness.The mechanism by which Fe particles enhance the TiC + A12O3 volume fraction in the composite is determined. 展开更多
关键词 composite coatings iron-based materials combustion cladding microstructure microhardness
下载PDF
Emissions from the combustion of eucalypt and pine chips in a fluidized bed reactor 被引量:1
2
作者 E.D.Vicente L.A.C.Tarelho +7 位作者 E.R.Teixeira M.Duarte T.Nunes C.Colombi V.Gianelle G.O.da Rocha A.Sanchez de la Campa C.A.Alves 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第4期246-258,共13页
Interest in renewable energy sources has increased in recent years due to environmental concerns about global warming and air pollution,reduced costs and improved efficiency of technologies.Under the European Union(E... Interest in renewable energy sources has increased in recent years due to environmental concerns about global warming and air pollution,reduced costs and improved efficiency of technologies.Under the European Union(EU)energy directive,biomass is a suitable renewable source.The aim of this study was to experimentally quantify and characterize the emission of particulate matter(PM(2.5))resulting from the combustion of two biomass fuels(chipped residual biomass from pine and eucalypt),in a pilot-scale bubbling fluidized bed(BFB)combustor under distinct operating conditions.The variables evaluated were the stoichiometry and,in the case of eucalypt,the leaching of the fuel.The CO and PM(2.5)emission factors were lower when the stoichiometry used in the experiments was higher(0.33±0.1 g CO/kg and 16.8±1.0 mg PM(2.5)/kg,dry gases).The treatment of the fuel by leaching before its combustion has shown to promote higher PM(2.5)emissions(55.2±2.5 mg/kg,as burned).Organic and elemental carbon represented 3.1 to 30 wt.% of the particle mass,while carbonate(CO3^(2-))accounted for between 2.3 and 8.5 wt.%.The particulate mass was mainly composed of inorganic matter(71% to 86% of the PM(2.5)mass).Compared to residential stoves,BFB combustion generated very high mass fractions of inorganic elements.Chloride was the water soluble ion in higher concentration in the PM(2.5)emitted by the combustion of eucalypt,while calcium was the dominant water soluble ion in the case of pine. 展开更多
关键词 Biomass Combustion Fluidized bed PM2.5emissions Chemical composition
原文传递
Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel
3
作者 Christof Lanzerstorfer 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期178-183,共6页
Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composi... Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230 ± 35 kg/m;, which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl-, S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl-and S were lower.This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants. 展开更多
关键词 Biomass combustion Miscanthus Ash composition Ash properties
原文传递
Synthesis of ZrC Nanoparticles in the ZrO_2–Mg–C–Fe System Through Mechanically Activated Self-Propagating High-Temperature Synthesis
4
作者 Abdollah Hajalilou Mansor Hashim +3 位作者 Halimah Mohamed kamari Kazem Javadi Samikannu Kanagesan Mohammad Parastegari 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第6期1144-1151,共8页
ZrC nanoparticles in the matrix of Fe were produced by the mechanically activated self-propagating hightemperature method using ZrO2/C/Mg/Fe powder mixtures. The effects of milling time, Fe content, and combustion tem... ZrC nanoparticles in the matrix of Fe were produced by the mechanically activated self-propagating hightemperature method using ZrO2/C/Mg/Fe powder mixtures. The effects of milling time, Fe content, and combustion temperature as well as the formation route for synthesizing ZrC powder particles were studied. The samples were characterized by XRD, SEM, TEM, and DTA. The XRD results revealed that, after 18 h of mechanical activation, ZrO2/ZC/Mg/Fe reacted with the self-propagating combustion(SHS) mode at 870 °C producing the ZrC–Fe nanocomposite. It was also found that both mechanical activation and Fe content played key roles in the ZrC synthesis temperature. With a Fe content of(5–40) wt%, the SHS reaction proceeded favorably and both the ZrC formation temperature and the adiabatic temperature(Tad) decreased. The Mg O content was removed from the final products using a leaching test process by dissolving in hydrochloric and acetic acids. 展开更多
关键词 Mechanical activation(MA) Combustion synthesis Fe–ZrC composite Leaching process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部