期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Cu–Mn–Ce ternary mixed-oxide catalysts for catalytic combustion of toluene 被引量:32
1
作者 Hanfeng Lu Xianxian Kong +2 位作者 Haifeng Huang Ying Zhou Yinfei Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期102-107,共6页
Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H_2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene ... Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H_2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the Ce O2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species. 展开更多
关键词 Cu-Mn-Ce mixed oxide Toluene Catalytic combustion Volatile organic compounds(VOCs)
原文传递
In-situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion 被引量:27
2
作者 卢晗锋 周瑛 +2 位作者 黄海凤 张波 陈银飞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第9期855-860,共6页
A monolithic series of Cu-Mn-Ce oxides supported on cordierites with different Cu/Mn/Ce molar ratios were prepared by the in-situ sol-gel method without any binder. The catalysts were characterized by scanning electro... A monolithic series of Cu-Mn-Ce oxides supported on cordierites with different Cu/Mn/Ce molar ratios were prepared by the in-situ sol-gel method without any binder. The catalysts were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and Brunauer-Emmett-Teller method (BET) and examined in the catalytic combustion of volatile organic compounds (VOCs). The results showed that the well-dispersed nanometer particles of mixed oxides adhered firmly to the cordierite surface. Cu0.15Mn0.3Ce55/cordierite was identified as the most active catalyst. Compared with commercial Pd/Al2O3, Cu0.15Mn0.3Ce55/cordierite showed higher activities for the combustion of various types of VOCs, especially for oxy-derivative compounds which could be lighted off below 200 ℃. 展开更多
关键词 catalytic combustion volatile organic compounds (VOCs) monolithic catalysts Cu-Mn-Ce mixed oxides rare earths
原文传递
Emission of organic carbon, elemental carbon and water-soluble ions from crop straw burning under flaming and smoldering conditions 被引量:7
3
作者 Lei Hong Gang Liu +3 位作者 Limin Zhou Jiuhai Li Hui Xu Dan Wu 《Particuology》 SCIE EI CAS CSCD 2017年第2期181-190,共10页
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4... Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl-, NO3-, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p 〈 0.01, R = 0.95 for wheat straw; p 〈 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl- and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl- and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl- with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl-/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution. 展开更多
关键词 Biomass combustion Organic carbon Elemental carbon Water-soluble ion
原文传递
Preparation of 3D micro/nanostructured CeO2: Influence of organic/inorganic acids 被引量:1
4
作者 Runnong Yang Lin Yu +3 位作者 Ming Sun Xiangyun Zhao Gao Cheng Wenjin Ye 《Particuology》 SCIE EI CAS CSCD 2018年第2期17-25,共9页
CeO2 is an important porous material with a wide range of applications in the abatement of volatile organic compounds (VOCs). In this paper, we prepared a series of novel three-dimensional (3D) micro/nanostructure... CeO2 is an important porous material with a wide range of applications in the abatement of volatile organic compounds (VOCs). In this paper, we prepared a series of novel three-dimensional (3D) micro/nanostructured CeO2 materials via a solvothermal method. Organic acid-assisted synthesis and inorganic acid post-treatment were used to adjust the Ce02 microstructures. The size of the 3D micro/nanostructures could be controlled in the range from 180nm to 1.5 μm and the surface morphology changed from rough to smooth with the use of different organic acids. The CeO2 synthesized with acetic acid featured a hierarchical porosity and showed good performance for toluene catalytic combustion: a T50 of 187 ℃ and a T90 of 195 ℃. Moreover, the crystallite size, textural properties, and surface chemical states could be tuned by inorganic acid modification. After treatment with HNO3, the modified CeO2 materials exhibited improved catalytic activity, with a T50 of-175 ℃ and a T90 of -187 ℃. We concluded that the toluene combustion activity is related to the porosity and the amount of surface active oxygen of the CeO2. Both these features can be tuned by the co-work of organic and inorganic acids. 展开更多
关键词 3D micro/nanostructure CeO2 Organic acid Inorganic acid Toluene catalytic combustion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部