期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Performance, Combustion and Emission Characteristics of Oxygenated Diesel in DI Engines: A Critical Review
1
作者 Joseph Lungu Lennox Siwale Rudolph Joe Kashinga 《Journal of Power and Energy Engineering》 2024年第6期16-49,共34页
The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofu... The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofuels. This technology has been utilized in reciprocating engines for decades. This paper reviews the viability of using an n-butanol blend as a short-term replacement for diesel by analyzing its physical and chemical properties, combustion, performance, and emission characteristics in compression ignition (CI) engines under various conditions, including variable load, speed, acceleration, and both stationary and transient cycles. N-Butanol exhibits higher viscosity, better lubricity, higher heating value, improved blend stability, enhanced cold-flow properties, and higher density. These factors influence spray formation, injection timing, atomization, and combustion characteristics. Its higher oxygen content improves the diffusion combustion stage and efficiency. Adding 5% and 10% n-butanol to diesel increases pressure and apparent heat release rate, slightly reduces temperature, and improves thermal efficiency, with mixed effects on CO and THC emissions and a notable decrease in particulate matter emissions. Fuel consumption increases, while the impact on NOx emissions varies. A 10% butanol blend is considered optimal for enhancing performance and reducing particulate emissions without significantly affecting NOx emissions. Blending up to 40% butanol with diesel does not require engine modifications or ECU recalibrations in engines calibrated for pure diesel. Due to its advantageous properties and performance, n-butanol is recommended as a superior alcohol-diesel blend than ethanol for short-term diesel replacement. 展开更多
关键词 Diesel Engine Alcohol Additives N-BUTANOL combustion and Properties
下载PDF
Characterization of bio-coal briquettes blended from low quality coal and biomass waste treated by Garant■bio-activator and its application for fuel combustion 被引量:1
2
作者 Anggoro Tri Mursito Widodo Danang Nor Arifin 《International Journal of Coal Science & Technology》 EI CAS 2020年第4期796-806,共11页
Experimental research was carried out on the manufacturing of bio-coal briquettes from a blend of two different types of low-quality coal and biomass waste in the absence of coal carbonization,where the third blend of... Experimental research was carried out on the manufacturing of bio-coal briquettes from a blend of two different types of low-quality coal and biomass waste in the absence of coal carbonization,where the third blend of the material was fermented by adding a bio-activator solution before pressurizing the components into briquettes.The coal samples from Caringin-Garut Regency(BB-Garut)had a low calorific value and a high sulfur content(6.57 wt%),whereas the coal samples from Bayah-Lebak Regency(BB-Bayah)had a higher calorific value and a lower sulfur content(0.51 wt%).The biomass added to the coal blend is in the form of fermented cow dung(Bio-Kohe),and it had a calorific value of 4192 kcal/kg and a total sulfur content of 1.56 wt%.The main objective of this study is to determine the total decrease in the sulfur content in a blend of coal and biomass in which a fennentation process was carried out using a bio-activator for 24 h.The used bio-activator was made from Garant■(1:40)+molasses 1 wt%/vol,and its used amount was 0.2 L/kg.Also,the total sulfur content in the blend was 1.00 wt%-1.14 wt%,which fulfills the necessary quality requirements for non-carbonized bio-coal briquettes.The pyritic and sulfate content in the raw coal was dominant,and the organic sulfur,when fermented with Garant■,was found to be less in the produced bio-coal briquettes by 38%-58%. 展开更多
关键词 Coal blending Biomass waste FERMENTATION Briquettes material combustion properties
下载PDF
Combustion Properties of Metal Particles as Components of Modified Double-Base Propellants
3
作者 Xiaofei Qi Hongyan Li +2 位作者 Ning Yan Ying Wang Xueli Chen 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期293-301,共9页
Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this ... Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this contribution,the combustion properties of the metal species are studied by means of the high-speed photography technique and the non-contact wavelet-based measurement of flame temperature distribution. The combustion process of the Al,Mg and Mg/Al samples shows both gas phase reaction and surface oxidation,which yield volatile and nonvolatile products,corresponding to the oxide and suboxide respectively. However,the combustion of B and Ni shows only gas phase reaction,due to their high melting point as well as high enthalpy of vaporization. In addition to the experiments,a hypothetical combustion model has been proposed to clarify the combustion characteristics of metal species in modified double-base propellants. 展开更多
关键词 metal particles modified double-base propellant combustion properties flame structure
下载PDF
Physical and mechanical characteristics of composite briquette from coal and pretreated wood fines 被引量:1
4
作者 Adekunle Adeleke Jamiu Odusote +3 位作者 Peter Ikubanni Olumuyiwa Lasode Madhurai Malathi Dayanand Pasawan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期1088-1098,共11页
Melina wood torrefied at 260℃ for 60 min was agglomerated with lean grade coal fines into composite briquettes using pitch as binder.Torrefied biomass(3%-20%)and coal fines(80%-97%)were blended together to produce th... Melina wood torrefied at 260℃ for 60 min was agglomerated with lean grade coal fines into composite briquettes using pitch as binder.Torrefied biomass(3%-20%)and coal fines(80%-97%)were blended together to produce the composite briquettes under a hydraulic press(28 MPa).The briquettes were cured at 300℃.Density,water resistance,drop to fracture,impact resistance,and cold crushing strength were evaluated for the composite briquettes.The proximate,ultimate,and calorific value analyses were carried out according to different ASTM standards.Microstructural studies were carried out using scanning electron microscope and electron probe microanalyzer equipped with energy dispersive x-ray.Fourier Transform Infrared Spectrophotometer(FTIR)was used to obtain the functional groups in the raw materials and briquettes.The density of the composite briquettes ranged from 0.92 to 1.31 g/cm^(3) after curing.Briquettes with<10%torrefied biomass has good water resistance index(>95%).The highest cold crushing strength of 4 MPa was obtained for briquettes produced from 97%coal fines and 3%torrefied biomass.The highest drop to fracture(54 times/2 m)and impact resistance index(1350)were obtained for the sample produced from 97%coal and 3%torrefied biomass.The fixed and elemental carbons of the briquettes showed a mild improvement compared to the raw coal.The peaks from FTIR spectra for the briquettes shows the presence of aromatic C=C bonds and phenolic OH group.The composite briquettes with up to 20%torrefied biomass can all be useful as fuel for various applications. 展开更多
关键词 Composite briquettes Lean grade coal Torrefied biomass Physico-mechanical properties combustion properties
下载PDF
Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants 被引量:4
5
作者 Christof Lanzerstorfer 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第4期191-197,共7页
For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass co... For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of(K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO3-4was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3 ± 0.8 μm, spread of particle size distribution19 ± 11, particle density 2620 ± 80 kg/m^3 and angle of repose 50°± 1°. The density of the straw fly ashes is lower(2260 ± 80 kg/m^3) and the spread of the size distribution is higher(72 ± 24).For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller,surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress. 展开更多
关键词 Biomass combustion Filter fly ash Chemical analysis Physical properties
原文传递
Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel
6
作者 Christof Lanzerstorfer 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期178-183,共6页
Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composi... Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230 ± 35 kg/m;, which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl-, S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl-and S were lower.This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants. 展开更多
关键词 Biomass combustion Miscanthus Ash composition Ash properties
原文传递
MgO-based adsorbents for CO2 adsorption:Influence of structural and textural properties on the CO_2 adsorption performance 被引量:4
7
作者 Gutiérrez-Bonilla Elvira Granados-Correa Francisco +1 位作者 Sánchez-Mendieta Víctor Morales-Luckie Raúl Alberto 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第7期418-428,共11页
A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2... A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2 physisorption measurements,and employed as potential adsorbents for CO_2 adsorption.The influence of structural and textural properties of these adsorbents over the CO_2 adsorption behaviour was also investigated.The results showed that MgO-based products prepared by solution–combustion and ball-milling processes,were highly porous,fluffy,nanocrystalline structures in nature,which are unique physico-chemical properties that significantly contribute to enhance their CO_2 adsorption.It was found that the MgO synthesized by solution combustion process,using a molar ratio of urea to magnesium nitrate(2:1),and treated by ball-milling during 2.5 hr(MgO-BM2.5h),exhibited the maximum CO_2 adsorption capacity of 1.611 mmol/g at 25℃ and 1 atm,mainly via chemisorption.The CO_2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area,total pore volume,pore size distribution and crystallinity.The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO_2adsorption–desorption times,without any significant loss of performance,that supports the potential of MgO-based adsorbent.The results confirmed that the special features of MgO prepared by solution–combustion and treated by ball-milling during 2.5 hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO_2 capture technologies. 展开更多
关键词 CO_2 adsorption MgO-based adsorbents Porous materials Solution–combustion synthesis Ball-milling process Textural properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部