Y2O2S:Eu nano crystallines were prepared by a new ethanol assisted combustion synthesis method using sulfurcontained organic fuel in an ethanol-aqueous solution. The as-prepared nanocrystallines were characterized by...Y2O2S:Eu nano crystallines were prepared by a new ethanol assisted combustion synthesis method using sulfurcontained organic fuel in an ethanol-aqueous solution. The as-prepared nanocrystallines were characterized by X-ray diffraction, transmission electron microscope, photoluminescence spectra and X-ray luminescence spectra. It is shown that the assistant fuel ethanol has the effect of decreasing the water needed, simplifying the experiment procedure by dissolving rare earth nitrate and sulfur-contained organic fuel into an even solution, and prompting the formation of rare earth oxysulfide by igniting firstly during heating that leads to combustion decomposition reaction. Y2O2S : Eu nano crystallines with strong photoluminescence and X-ray luminescence are obtained using thioacetamide as organic fuel. Mixtures of Y2O3 : Eu and Y2O2S : Eu are acquired using thiourea as fuel, and the content of Y2O2S : Eu increases until reaches to about half of the Y2O3 : Eu with the increasing amount of thiourea. Y2O2SO4 : Eu emerges when S/Y = 6 and increases with increasing thiourea amount.展开更多
Compounds of Sr3Al2O6 : Eu, SrgAl14O25 : Eu, and BaZnSiO4 : Eu were synthesized by high-temperature solid state reactions. The doping Eu^3 + ions were partially reduced to Eu^2+ in Sr4Al14O25:Eu and BaZnSiOg:Eu...Compounds of Sr3Al2O6 : Eu, SrgAl14O25 : Eu, and BaZnSiO4 : Eu were synthesized by high-temperature solid state reactions. The doping Eu^3 + ions were partially reduced to Eu^2+ in Sr4Al14O25:Eu and BaZnSiOg:Eu prepared in an oxidizing atmosphere, N^2 + O2. However, such an abnormal reduction process could not be performed in Sr3Al2O6:Eu, which was also prepared in an atmosphere of N^2 + O2. Moreover, even though Sr3A1EO6:Eu was synthesized in a reducing condition CO, only part of the Eu^3 + ions was reduced to Eu^2 + . The existence of trivalent and divalent europium ions was confirmed by photoluminescent spectra. The different valence-change behaviors of europium ions in the hosts were attributed to the difference in host crystal structures. The higher the crystal structure stiffness, the easier the reduction process from Eu^3 + to Eu^2 + .展开更多
Waste aluminate rare earth phosphor is an important rare earth elements (REEs) secondary resource, which mainly consists of BaMgAl1()O|7:Eu2+(BAM) and CeMgAl11O19:Tb^3+(CMAT). Alkaline fusion process is widely used to...Waste aluminate rare earth phosphor is an important rare earth elements (REEs) secondary resource, which mainly consists of BaMgAl1()O|7:Eu2+(BAM) and CeMgAl11O19:Tb^3+(CMAT). Alkaline fusion process is widely used to recycle REEs from aluminate phosphor, but the related theory remains imperfect. In this paper, a series of alkaline fusion experiments of CMAT were performed to describe the phase change law of CMAT reactions. Based on comprehensive analysis, cation-oxoanion synergies theory (COST) was proposed to explain the aluminate phosphor structure damage. On the mirror plane of aluminate phosphor crystal structure, alkali metal cations (Na^+,K^+) would substitute rare earth ions, while free oxoanion (OH^-, CO3^2-, O2^2-) can combine with rare earth ions. These two ionic forces ensure that rare earth ions can be substituted by cations. Then, the structure is decomposed. Morphological analysis shows that observable expression of COST can be described by shrinking core model after simplification. Reaction rate constant calculated indicates that the reaction degree is nanometers per second. COST provides a more complete mechanism, and it can help improve rare earth recycling technology furtherly.展开更多
Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characte...Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characterized by XRD, TEM, photoluminescence and radioluminescence spectra excited by UV and X-ray, respectively. The purified crystalline phase of LuAG:Ce was obtained at 900 ℃ by directly crystallizing from amorphous materials. The resultant Lu- AG:Ce phosphors were uniform and had good dispersivity with an average particle size of about 30 urn. Both photoluminescence and radioluminescence were well-known Ce^3+ emissions located in the range of 470 -600 nm consisting of two emission bands because of the transition from the lowest 5d excited state (2D) to the 4f ground state of Ce^3+, which matched well with the sensitivity curve of the Si-photodiode. There was a little red shift for the emission components from the UV-excited emission spectrum to the X-ray-excited emission spectrum. The fast scintillation decay component of 26 ns satisfies the requirements of fast scintillators.展开更多
Citric acid complexing sol-gel auto-combustion method was explored to synthesize superfine Sr2CeO4 phosphors using the inorganic salts Sr(NO3)2 and Ce(NO3)3 as raw materials together with citric acid (CA) as a c...Citric acid complexing sol-gel auto-combustion method was explored to synthesize superfine Sr2CeO4 phosphors using the inorganic salts Sr(NO3)2 and Ce(NO3)3 as raw materials together with citric acid (CA) as a chelating agent. TGDTA, XRD, SEM and photoluminescence spectra were used to investigate the formation process, microstructure and luminescent properties of the synthesized Sr2CeO4. The results show that the crystallization of Sr2CeO4 begins at about 800 ℃ and completes around 900 ℃ with an orthorhombic structure. When the calcination temperature is above 1000 ℃, Sr2CeO4 partly decomposes into SrCeO3. SEM studies show that the particles of Sr2CeO4 obtained at 900 ℃ are sphericallike shape and superfine with diameter below 100 nm. The excitation spectrum of the superfine Sr2CeO4 phosphors displays a broad band with two peaks around 290 and 350 nm respectively. The former peak is stronger than the latter one. This broad band is due to the charge transfer (CT) band of the Ce^4+ ion. Excited by a radiation of 290 nm, the superfine phosphors emit a strong blue-white fluorescence, and the emission spectrum shows a broad band with a peak around 470 nm, which can be assigned to the f→t1g transition of Ce^4+ . It is found that the emission intensity is affected by the calcination temperature.展开更多
Lithium calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (Tb3+ and Dy3+) elements was synthesized by novel solution combustion synthesis. The reaction produced ve...Lithium calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (Tb3+ and Dy3+) elements was synthesized by novel solution combustion synthesis. The reaction produced very stable crystalline LiCaBO3:D(D=Tb3+ and Dy3+) phosphors. These rare earth doped phosphors material showed maximum TL sensitivity with favorable glow curve shape. TL glow curve of X-ray irradiated that LiCaBO3:Tb3+ and LiCaBO3:Dy3+ samples showed two major well-separated glow peaks. The TL sensitivity of these phosphors to X-ray radiation was comparable with that of TLD-100(Harshaw). Photoluminescence spectra of LiCaBO3:Tb3+ and LiCaBO3:Dy3+ showed the characteristic Tb3+ and Dy3+ peaks respectively. TL response to X-ray radiation dose was linear up to 25 Gy.展开更多
The phosphors(Ce 0 67 Tb 0 33 )MgAl 11 O 19 (P G) and BaMgAl 10 O 17 ∶Eu 2+ (P B) have been synthesized using the microwave irradiation technique. The data of X ray powder diffraction...The phosphors(Ce 0 67 Tb 0 33 )MgAl 11 O 19 (P G) and BaMgAl 10 O 17 ∶Eu 2+ (P B) have been synthesized using the microwave irradiation technique. The data of X ray powder diffraction( d values and I/I 0 values) are basically coincided with the data of JCPDF 36 73 and 26 163 cards. The calculated cell dimensions are a =0 5582 nm, c =2 1884 nm for P G, and a =0 5616 nm, c =2 2614 nm for P B. The excitation spectra and the emission spectra of the phosphors were measured. The chromatic coordinates are x =0 316, y =0 565 for P G, and x =0 156, y =0 106 for P B. The relative luminescent intensity is about 88%(P G) and 80%(P B), respectively, compared with the same commercial phosphors. The phosphors were also detected by scanning election microscope.展开更多
The preparation of NaCaPO4 doped with rare earth (RE) ions Ce3+, Eu3+ and Dy3+ by combustion method was described. Under UV excitation (251 nm) of NaCaPO4:Ce3+ showsd emission (367 nm) in UV range. When NaC...The preparation of NaCaPO4 doped with rare earth (RE) ions Ce3+, Eu3+ and Dy3+ by combustion method was described. Under UV excitation (251 nm) of NaCaPO4:Ce3+ showsd emission (367 nm) in UV range. When NaCaPO4:Dy3+ phosphor was excited at 349 nm, the emission spectrum showed intense bands at 482 nm (blue) and 576 nm (yellow). In Eu activated NaCaPO4 phosphor, the emission spectrum showed a dominant peak at 594 nm (orange) while others were at 614 and 621 nm (red) when excited at 393 nm. The prepared phosphor was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence (PL) measurement. Thus, the photoluminescence behavior of NaCaPO4:Ce3+ was strongly suggested for scintillator. Likewise, Eu3+ and Dy3+ activated NaCaPO4 phosphors were recommended for near-UV white light-emitting diodes (LEDs).展开更多
Blue-green luminescent BaAl2O4:Eu2+,Dy3+ phosphor powders were synthesized via combustion synthesis method assisted by microwave irradiation in air. The phosphors were characterized by X-ray diffraction (XRD), sc...Blue-green luminescent BaAl2O4:Eu2+,Dy3+ phosphor powders were synthesized via combustion synthesis method assisted by microwave irradiation in air. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometer. The XRD results revealed that when the concentration of urea was over 3 times higher than theoretical quantities, a BaAl2O4 single hexagonal phase was obtained. The SEM results revealed that the surface of the BaAl2O4:Eu2+,Dy3+ powder samples showed lots of voids and pores. The BaAl2O4:Eu2+,Dy3+ phosphors exhibited a broad emission band of main peak at 496 nm and a shoulder peak at 426 nm under excitation of 337 nm. The BaAl2O4:Eu2+,Dy3+ phosphors at the Eu2+ concentration of 1 mol.% showed the strongest luminescent intensity. Long afterglow phosphorescence was observed in the dark with naked eyes after the removal of the excitation source.展开更多
High-efficient Tb^3+ activated SrAl2O4 phosphor was synthesized by a combined combustion-solid-state reaction method. The precursor of SrAl2O4:Th^3+ phosphor was prepared via a combustion process, and then the as-p...High-efficient Tb^3+ activated SrAl2O4 phosphor was synthesized by a combined combustion-solid-state reaction method. The precursor of SrAl2O4:Th^3+ phosphor was prepared via a combustion process, and then the as-prepared powder was heated in a reductive ambient of activated carbon at 1250 ℃ for 1 h. The results of X-ray diffraction, scanning electron microscopy, and photoluminescence spectra revealed the influence of the dosage of urea and heated process on the crystallinity, morphology, and photoluminescence of the phosphor. Comparing with traditional solid-sate reaction, the crystallinity and emission intensity of the SrAl2O4:Tb^3+ phosphor were improved by this two-step process.展开更多
Cerium-doped yttrium aluminum garnet(YAG:Ce) as a yellow phosphor for white light-emitting diodes(LEDs) was synthesized via a facile combustion method using Y2 O3, CeO2, Al2 O3, Al,and NaClO4 as raw materials. Th...Cerium-doped yttrium aluminum garnet(YAG:Ce) as a yellow phosphor for white light-emitting diodes(LEDs) was synthesized via a facile combustion method using Y2 O3, CeO2, Al2 O3, Al,and NaClO4 as raw materials. The combustion synthesis approach utilizes the strong exothermic oxidation of aluminum to realize a self-sustaining reaction. In this study, we investigated the effects of the ratios of Al2 O3 to AI,fluxes, and coprecipitated materials as raw materials on the luminescence properties of the synthesized YAG:Ce phosphors. When the amount of Al2 O3 x is varied, the combustion reaction proceeds at x ≤ 1.8,with x = 1.725 being the optimum condition for producing a high-performance product. When 5 wt%BaF2 is added, the luminescence intensity is significantly improved owing to a decrease of YAP(YAlO3)formation with improved uniformity. However, the addition of CaF2 and NaF does not improve the luminescence properties. To suppress the segregation of CeO2, we used the coprecipitated material Y2 O3-CeO2 as a raw material. Unlike with separate addition of Y2 O3 and CeO2, Ce ions are uniformly distributed in the coprecipitated material, resulting in improved luminescence properties. The combination of BaF2 and coprecipitated material significantly improves the internal quantum efficiency to83.0%, which is close to that of commercial phosphors.展开更多
A novel salt-assisted combustion process with ethylene glycol as a fuel and nitrate as an oxidant to synthesize high surface area celia nanopowders was reported. The effects of various tunable conditions, such as fuel...A novel salt-assisted combustion process with ethylene glycol as a fuel and nitrate as an oxidant to synthesize high surface area celia nanopowders was reported. The effects of various tunable conditions, such as fuel-to-oxidant ratio, type of salts, and amount of added salts, on the characteristics of the as-prepared powders were investigated by X-ray diffraction, transmission electron microscopy and BET surface area measurement. A mechanism scheme was proposed to illustrate the possible formation processes of well-dispersed ceria nanoparticles in the salt-assisted combustion synthesis. It was verified that the simple introduction of leachable inert inorganic salts as an excellent agglomeration inhibitor into the redox mixture precursor leads to the formation of well-dispersed ceria particles with particle size in the range of 4 ~6 nm and a drastic increase in the surface area. The presence of KCl results in an over ten-fold increment in specific surface area from 14.10 m^2·g^-1 for the produced ceria powders via the conventional combustion synthesis process to 156.74 m^2·g^-1 for the product by the salt-assisted combustion synthesis process at the same molar ratio of ethylene glycol-nitrate.展开更多
Highly dispersed perovskite NdCoO3 nanoparticles were prepared by a novel salt-assisted combustion process. The effects of NaCl content and calcination temperature on the characteristics of the products were character...Highly dispersed perovskite NdCoO3 nanoparticles were prepared by a novel salt-assisted combustion process. The effects of NaCl content and calcination temperature on the characteristics of the products were characterized by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and BET surface area measurement. The facile introduction of NaCl in the conventional combustion synthesis process was found to result in the formation of well-dispersed perovskite nanoparticles and increase specific surface areas of the resultants from 1.7 to 43.2 m2·g-1. The catalytic properties of the typical NdCoO3 samples for thermal decomposition of ammonia perchlorate (AP) and their correlation with the NdCoO3 microstructure were investigated by Differential Scanning Calorimetry (DSC). The DSC results indicate that the addition of the amorphous NdCoO3 nanoparticles to AP incorporates two small exothermic peaks of AP into a strong exothermic peak, decreases the temperature of the AP exothermic peak to 314.0 ℃ by reduction of 138.3 ℃ and increases the apparent decomposition heat from 515 J·g-1 to over 1441 J·g-1, showing the intense catalytic activity for thermal decomposition of AP. It is also clear that the catalytic activity of the resultant NdCoO3 is related to their microstructure. According to Kissinger′s method, the kinetics parameters of the thermal decomposition of AP catalyzed by the as-prepared NdCoO3 samples were calculated to account for the order of their catalytic activity.展开更多
Long-lasting SrAl2O4∶Eu, Dy phosphor was successfully prepared from a mesoporous precursor. The precursor was synthesized by templating method using nonionic Polyethylene Oxide (PEO) as surfactants, which was proved ...Long-lasting SrAl2O4∶Eu, Dy phosphor was successfully prepared from a mesoporous precursor. The precursor was synthesized by templating method using nonionic Polyethylene Oxide (PEO) as surfactants, which was proved by TG-DTG, X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) analysis. The analysis results indicated that regular cylindrical-to-hexagonal shaped pores with several nanometers were obtained. The structure and morphology of the SrAl2O4∶Eu, Dy phosphor by templating method was characterized by XRD and Scanning Electron Microscopy (SEM). The XRD results showed that a pure SrAl2O4 phase formed at 900 ℃ by templating method. The SEM morphologies of the obtained phosphors prepared by templating synthesis were uniform and porous multicrystalline with average diameter size of 5 μm. The broad-band UV-excited SrAl2O4∶Eu, Dy phosphor derived from a mosoporous precursor was observed at λmax=515 nm due to the transitions from the 4f65d1 to the 4f7 configurations of Eu2+ ion. The main excitation and emission intensity of the phosphor with this method were stronger than that obtained by solid state reaction method. And the obtained long-lasting phosphor with this method revealed a better afterglow compared to the phosphor prepared through solid state reaction method.展开更多
Eu-doped Ca-α-SiAlON yellow phosphors, with the compositions Ca0.72Eu0.08Si9.56Al2.44O0.84N15.16, were prepared by a highly efficient combustion synthesis method. By optimizing the starting compositions of reactants ...Eu-doped Ca-α-SiAlON yellow phosphors, with the compositions Ca0.72Eu0.08Si9.56Al2.44O0.84N15.16, were prepared by a highly efficient combustion synthesis method. By optimizing the starting compositions of reactants and choosing appropriate post-annealing conditions, phase-pure, uniform and fine Ca-α-sialon:Eu2+ phosphors possessing the particle size ranging -3-5μm, and good luminescence properties with an intense emission band that peaks at 592 nm under n-UV or blue light excitation were ob-tained. The results indicated that combustion synthesis method was an energy efficient, time saving and low cost way to prepare Ca-α-SiAlON phosphors by controlling the mass ratio of comburents. A combination with post-annealing treatment was desired for further increase of the properties of Ca-α-SiAlON phosphors.展开更多
Eu3+ activated Ca4Yt(SiO4)60 phosphors were prepared by combustion synthesis method, and their morphologies and lu- minescent properties were investigated. Field scanning electron microscopy (FSEM) confirmed that...Eu3+ activated Ca4Yt(SiO4)60 phosphors were prepared by combustion synthesis method, and their morphologies and lu- minescent properties were investigated. Field scanning electron microscopy (FSEM) confirmed that the crystallite sizes of nanoparti- cles with narrow diameter ranging from 30 to 60 rim. The excitation spectra of CaaY6(SiO4)60:Etl3+ showed that there existed two strong excitation bands at around 399 nm (TFo----~SL6) and 469 nm (TF0---*SD2), which were consistent with the output wavelengths of near-UV and blue LEDs, respectively. The emission spectra of Ca4Y6(SiO4)60:Eu3+ were dominant by a red peak located at 614 nm due to the 5Do→7TF2 transition of Eu3+. With the increase of Eu3+concentration, the luminescence intensity of the red phosphor reached maximum and then decreased. The optimum concentration for Eug+in Ca4Y6(SiO4)60 was 21 mol.%.展开更多
Ultrafine Y0.95–xGdxEu0.05Al3(BO3)4 phosphors with different Gd3+ concentrations were prepared by a solution combustion method, and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM). Resu...Ultrafine Y0.95–xGdxEu0.05Al3(BO3)4 phosphors with different Gd3+ concentrations were prepared by a solution combustion method, and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM). Results showed that the pure phase of YAl3(BO3)4 was obtained at 1000 oC and the prepared particle size varied with calcining temperatures. Photoluminescence spectra indicated that the dominant emission peak was observed at 612 nm due to the 5D0→7F2 transition of Eu3+. The luminescence intensity of ...展开更多
The long afterglow phosphor CaAl2O4: Eu^2+, Nd^3+ was prepared by the high temperature solid-state reaction method, and the influence of La^3+ and Dy^3+ on the properties of the long afterglow phosphor was studie...The long afterglow phosphor CaAl2O4: Eu^2+, Nd^3+ was prepared by the high temperature solid-state reaction method, and the influence of La^3+ and Dy^3+ on the properties of the long afterglow phosphor was studied by X-ray diffiaction (XRD), photoluminescence (PL), and thermoluminescence (TL). The XRD pattem shows the host phase of CaAl2O4 is produced and no impurity phase appears. The peak wavelength of the phosphor does not vary with La^3+ and Dy^3+ doping. It implies that the crystal field, which affects the 5d electron states of Eu^2+, is not changed dramatically after doping of La^3+ and Dy^3+. The TL spectra indicate that the phosphor doped with La^3+ or Dy^3+ produces different depths of trap energy level. In the mechanism of long afterglow luminescence, it is considered that La^3+ or Dy^3+ works as trap energy level. The decay time lies on the number of electrons in the trap energy level and the rate of the electrons returning to the excitation level.展开更多
CaAl2O4:Eu3+,R+(R=Li+,Na+,K+) red phosphors were synthesized by solid state reaction method.X-ray diffraction(XRD) and photoluminescence(PL) were employed to characterize their structural and luminescent properties.It...CaAl2O4:Eu3+,R+(R=Li+,Na+,K+) red phosphors were synthesized by solid state reaction method.X-ray diffraction(XRD) and photoluminescence(PL) were employed to characterize their structural and luminescent properties.It was found that the optimal sintering temperature and sintering time were 1200 °C and 4 h,respectively.The optimal concentration of doped Eu3+ was 3 mol.%.Furthermore,under ultraviolet excitation with a wavelength of 254 nm,these samples showed red luminescence which were probably attributed to...展开更多
The Ba x-0.05MgAl 10O 16+x∶Eu 2+ 0.05 (0.88≤x ≤1.02) phosphors with different Ba 2+ content and the Ba 0.85MgAl 10O 16.94∶Eu 2+ 0.09 phosphors with different fluxes (BaF 2, MgF 2, AlF ...The Ba x-0.05MgAl 10O 16+x∶Eu 2+ 0.05 (0.88≤x ≤1.02) phosphors with different Ba 2+ content and the Ba 0.85MgAl 10O 16.94∶Eu 2+ 0.09 phosphors with different fluxes (BaF 2, MgF 2, AlF 3, BaCl 2, MgCl 2, AlCl 3, H 3BO 3) were prepared by high temperature solid-state reaction method and their luminescence characteristics were studied under 254 nm excitation and vacuum ultraviolet (VUV) excitation. With the increase of the Ba 2+ content, there is an increase in the emission intensity, and when x=0.94, it reaches a maximum. Then, as the Ba 2+ content increases, the emission intensity slowly falls. The fluorides have better flux-effects than chlorides and H 3BO 3. The possible mechanism in the process of particle growth was discussed when fluorides were used as fluxes. The effect of the activator concentration on this system was also investigated. The quenching concentration is 0.13 mol in per mole host.展开更多
文摘Y2O2S:Eu nano crystallines were prepared by a new ethanol assisted combustion synthesis method using sulfurcontained organic fuel in an ethanol-aqueous solution. The as-prepared nanocrystallines were characterized by X-ray diffraction, transmission electron microscope, photoluminescence spectra and X-ray luminescence spectra. It is shown that the assistant fuel ethanol has the effect of decreasing the water needed, simplifying the experiment procedure by dissolving rare earth nitrate and sulfur-contained organic fuel into an even solution, and prompting the formation of rare earth oxysulfide by igniting firstly during heating that leads to combustion decomposition reaction. Y2O2S : Eu nano crystallines with strong photoluminescence and X-ray luminescence are obtained using thioacetamide as organic fuel. Mixtures of Y2O3 : Eu and Y2O2S : Eu are acquired using thiourea as fuel, and the content of Y2O2S : Eu increases until reaches to about half of the Y2O3 : Eu with the increasing amount of thiourea. Y2O2SO4 : Eu emerges when S/Y = 6 and increases with increasing thiourea amount.
基金Project supported bythe National Natural Science Foundation of China (50125258 ,60377040)
文摘Compounds of Sr3Al2O6 : Eu, SrgAl14O25 : Eu, and BaZnSiO4 : Eu were synthesized by high-temperature solid state reactions. The doping Eu^3 + ions were partially reduced to Eu^2+ in Sr4Al14O25:Eu and BaZnSiOg:Eu prepared in an oxidizing atmosphere, N^2 + O2. However, such an abnormal reduction process could not be performed in Sr3Al2O6:Eu, which was also prepared in an atmosphere of N^2 + O2. Moreover, even though Sr3A1EO6:Eu was synthesized in a reducing condition CO, only part of the Eu^3 + ions was reduced to Eu^2 + . The existence of trivalent and divalent europium ions was confirmed by photoluminescent spectra. The different valence-change behaviors of europium ions in the hosts were attributed to the difference in host crystal structures. The higher the crystal structure stiffness, the easier the reduction process from Eu^3 + to Eu^2 + .
基金financially supported by the National Natural Science Foundation of China (Nos. U1360202, 51472030, 51672024 and 515102014)
文摘Waste aluminate rare earth phosphor is an important rare earth elements (REEs) secondary resource, which mainly consists of BaMgAl1()O|7:Eu2+(BAM) and CeMgAl11O19:Tb^3+(CMAT). Alkaline fusion process is widely used to recycle REEs from aluminate phosphor, but the related theory remains imperfect. In this paper, a series of alkaline fusion experiments of CMAT were performed to describe the phase change law of CMAT reactions. Based on comprehensive analysis, cation-oxoanion synergies theory (COST) was proposed to explain the aluminate phosphor structure damage. On the mirror plane of aluminate phosphor crystal structure, alkali metal cations (Na^+,K^+) would substitute rare earth ions, while free oxoanion (OH^-, CO3^2-, O2^2-) can combine with rare earth ions. These two ionic forces ensure that rare earth ions can be substituted by cations. Then, the structure is decomposed. Morphological analysis shows that observable expression of COST can be described by shrinking core model after simplification. Reaction rate constant calculated indicates that the reaction degree is nanometers per second. COST provides a more complete mechanism, and it can help improve rare earth recycling technology furtherly.
基金Project supported by the National Defence Fundamental Research Project of China
文摘Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characterized by XRD, TEM, photoluminescence and radioluminescence spectra excited by UV and X-ray, respectively. The purified crystalline phase of LuAG:Ce was obtained at 900 ℃ by directly crystallizing from amorphous materials. The resultant Lu- AG:Ce phosphors were uniform and had good dispersivity with an average particle size of about 30 urn. Both photoluminescence and radioluminescence were well-known Ce^3+ emissions located in the range of 470 -600 nm consisting of two emission bands because of the transition from the lowest 5d excited state (2D) to the 4f ground state of Ce^3+, which matched well with the sensitivity curve of the Si-photodiode. There was a little red shift for the emission components from the UV-excited emission spectrum to the X-ray-excited emission spectrum. The fast scintillation decay component of 26 ns satisfies the requirements of fast scintillators.
文摘Citric acid complexing sol-gel auto-combustion method was explored to synthesize superfine Sr2CeO4 phosphors using the inorganic salts Sr(NO3)2 and Ce(NO3)3 as raw materials together with citric acid (CA) as a chelating agent. TGDTA, XRD, SEM and photoluminescence spectra were used to investigate the formation process, microstructure and luminescent properties of the synthesized Sr2CeO4. The results show that the crystallization of Sr2CeO4 begins at about 800 ℃ and completes around 900 ℃ with an orthorhombic structure. When the calcination temperature is above 1000 ℃, Sr2CeO4 partly decomposes into SrCeO3. SEM studies show that the particles of Sr2CeO4 obtained at 900 ℃ are sphericallike shape and superfine with diameter below 100 nm. The excitation spectrum of the superfine Sr2CeO4 phosphors displays a broad band with two peaks around 290 and 350 nm respectively. The former peak is stronger than the latter one. This broad band is due to the charge transfer (CT) band of the Ce^4+ ion. Excited by a radiation of 290 nm, the superfine phosphors emit a strong blue-white fluorescence, and the emission spectrum shows a broad band with a peak around 470 nm, which can be assigned to the f→t1g transition of Ce^4+ . It is found that the emission intensity is affected by the calcination temperature.
基金Project supported by University Grant Commission, New Delhi (UGC/F.1/37-332/2009(SR))
文摘Lithium calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (Tb3+ and Dy3+) elements was synthesized by novel solution combustion synthesis. The reaction produced very stable crystalline LiCaBO3:D(D=Tb3+ and Dy3+) phosphors. These rare earth doped phosphors material showed maximum TL sensitivity with favorable glow curve shape. TL glow curve of X-ray irradiated that LiCaBO3:Tb3+ and LiCaBO3:Dy3+ samples showed two major well-separated glow peaks. The TL sensitivity of these phosphors to X-ray radiation was comparable with that of TLD-100(Harshaw). Photoluminescence spectra of LiCaBO3:Tb3+ and LiCaBO3:Dy3+ showed the characteristic Tb3+ and Dy3+ peaks respectively. TL response to X-ray radiation dose was linear up to 25 Gy.
文摘The phosphors(Ce 0 67 Tb 0 33 )MgAl 11 O 19 (P G) and BaMgAl 10 O 17 ∶Eu 2+ (P B) have been synthesized using the microwave irradiation technique. The data of X ray powder diffraction( d values and I/I 0 values) are basically coincided with the data of JCPDF 36 73 and 26 163 cards. The calculated cell dimensions are a =0 5582 nm, c =2 1884 nm for P G, and a =0 5616 nm, c =2 2614 nm for P B. The excitation spectra and the emission spectra of the phosphors were measured. The chromatic coordinates are x =0 316, y =0 565 for P G, and x =0 156, y =0 106 for P B. The relative luminescent intensity is about 88%(P G) and 80%(P B), respectively, compared with the same commercial phosphors. The phosphors were also detected by scanning election microscope.
基金Project supported by University Grant Commission (UGC), New Delhi, India
文摘The preparation of NaCaPO4 doped with rare earth (RE) ions Ce3+, Eu3+ and Dy3+ by combustion method was described. Under UV excitation (251 nm) of NaCaPO4:Ce3+ showsd emission (367 nm) in UV range. When NaCaPO4:Dy3+ phosphor was excited at 349 nm, the emission spectrum showed intense bands at 482 nm (blue) and 576 nm (yellow). In Eu activated NaCaPO4 phosphor, the emission spectrum showed a dominant peak at 594 nm (orange) while others were at 614 and 621 nm (red) when excited at 393 nm. The prepared phosphor was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence (PL) measurement. Thus, the photoluminescence behavior of NaCaPO4:Ce3+ was strongly suggested for scintillator. Likewise, Eu3+ and Dy3+ activated NaCaPO4 phosphors were recommended for near-UV white light-emitting diodes (LEDs).
基金supported by the National Natural Science Foundation of China (60477034)
文摘Blue-green luminescent BaAl2O4:Eu2+,Dy3+ phosphor powders were synthesized via combustion synthesis method assisted by microwave irradiation in air. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometer. The XRD results revealed that when the concentration of urea was over 3 times higher than theoretical quantities, a BaAl2O4 single hexagonal phase was obtained. The SEM results revealed that the surface of the BaAl2O4:Eu2+,Dy3+ powder samples showed lots of voids and pores. The BaAl2O4:Eu2+,Dy3+ phosphors exhibited a broad emission band of main peak at 496 nm and a shoulder peak at 426 nm under excitation of 337 nm. The BaAl2O4:Eu2+,Dy3+ phosphors at the Eu2+ concentration of 1 mol.% showed the strongest luminescent intensity. Long afterglow phosphorescence was observed in the dark with naked eyes after the removal of the excitation source.
基金Tianjin Natural Science Foundation (06TXTJJC14600, 07JCYBJC06400)the Key Technologies R&D Program of Shandong Province (2006gg2201014)
文摘High-efficient Tb^3+ activated SrAl2O4 phosphor was synthesized by a combined combustion-solid-state reaction method. The precursor of SrAl2O4:Th^3+ phosphor was prepared via a combustion process, and then the as-prepared powder was heated in a reductive ambient of activated carbon at 1250 ℃ for 1 h. The results of X-ray diffraction, scanning electron microscopy, and photoluminescence spectra revealed the influence of the dosage of urea and heated process on the crystallinity, morphology, and photoluminescence of the phosphor. Comparing with traditional solid-sate reaction, the crystallinity and emission intensity of the SrAl2O4:Tb^3+ phosphor were improved by this two-step process.
基金supported by the"Nanotechnology Platform"Program of the Ministry of Education,Culture,Sports,Science and Technology of Japan(MEXT)
文摘Cerium-doped yttrium aluminum garnet(YAG:Ce) as a yellow phosphor for white light-emitting diodes(LEDs) was synthesized via a facile combustion method using Y2 O3, CeO2, Al2 O3, Al,and NaClO4 as raw materials. The combustion synthesis approach utilizes the strong exothermic oxidation of aluminum to realize a self-sustaining reaction. In this study, we investigated the effects of the ratios of Al2 O3 to AI,fluxes, and coprecipitated materials as raw materials on the luminescence properties of the synthesized YAG:Ce phosphors. When the amount of Al2 O3 x is varied, the combustion reaction proceeds at x ≤ 1.8,with x = 1.725 being the optimum condition for producing a high-performance product. When 5 wt%BaF2 is added, the luminescence intensity is significantly improved owing to a decrease of YAP(YAlO3)formation with improved uniformity. However, the addition of CaF2 and NaF does not improve the luminescence properties. To suppress the segregation of CeO2, we used the coprecipitated material Y2 O3-CeO2 as a raw material. Unlike with separate addition of Y2 O3 and CeO2, Ce ions are uniformly distributed in the coprecipitated material, resulting in improved luminescence properties. The combination of BaF2 and coprecipitated material significantly improves the internal quantum efficiency to83.0%, which is close to that of commercial phosphors.
基金Project supported bythe National Natural Science Foundation of China (50306008) andthefundfromthe Preli minary ResearchProject of General Equipment Ministry (41328030507)
文摘A novel salt-assisted combustion process with ethylene glycol as a fuel and nitrate as an oxidant to synthesize high surface area celia nanopowders was reported. The effects of various tunable conditions, such as fuel-to-oxidant ratio, type of salts, and amount of added salts, on the characteristics of the as-prepared powders were investigated by X-ray diffraction, transmission electron microscopy and BET surface area measurement. A mechanism scheme was proposed to illustrate the possible formation processes of well-dispersed ceria nanoparticles in the salt-assisted combustion synthesis. It was verified that the simple introduction of leachable inert inorganic salts as an excellent agglomeration inhibitor into the redox mixture precursor leads to the formation of well-dispersed ceria particles with particle size in the range of 4 ~6 nm and a drastic increase in the surface area. The presence of KCl results in an over ten-fold increment in specific surface area from 14.10 m^2·g^-1 for the produced ceria powders via the conventional combustion synthesis process to 156.74 m^2·g^-1 for the product by the salt-assisted combustion synthesis process at the same molar ratio of ethylene glycol-nitrate.
基金the National Natural Science Foundation of China (50306008)Start up Research Fund of Nanchang University and the Natural Science Foundation of Higher Education Institutions in Anhui Province (KJ2007B231)
文摘Highly dispersed perovskite NdCoO3 nanoparticles were prepared by a novel salt-assisted combustion process. The effects of NaCl content and calcination temperature on the characteristics of the products were characterized by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and BET surface area measurement. The facile introduction of NaCl in the conventional combustion synthesis process was found to result in the formation of well-dispersed perovskite nanoparticles and increase specific surface areas of the resultants from 1.7 to 43.2 m2·g-1. The catalytic properties of the typical NdCoO3 samples for thermal decomposition of ammonia perchlorate (AP) and their correlation with the NdCoO3 microstructure were investigated by Differential Scanning Calorimetry (DSC). The DSC results indicate that the addition of the amorphous NdCoO3 nanoparticles to AP incorporates two small exothermic peaks of AP into a strong exothermic peak, decreases the temperature of the AP exothermic peak to 314.0 ℃ by reduction of 138.3 ℃ and increases the apparent decomposition heat from 515 J·g-1 to over 1441 J·g-1, showing the intense catalytic activity for thermal decomposition of AP. It is also clear that the catalytic activity of the resultant NdCoO3 is related to their microstructure. According to Kissinger′s method, the kinetics parameters of the thermal decomposition of AP catalyzed by the as-prepared NdCoO3 samples were calculated to account for the order of their catalytic activity.
基金the National Natural Science Foundation of China (20376009)
文摘Long-lasting SrAl2O4∶Eu, Dy phosphor was successfully prepared from a mesoporous precursor. The precursor was synthesized by templating method using nonionic Polyethylene Oxide (PEO) as surfactants, which was proved by TG-DTG, X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) analysis. The analysis results indicated that regular cylindrical-to-hexagonal shaped pores with several nanometers were obtained. The structure and morphology of the SrAl2O4∶Eu, Dy phosphor by templating method was characterized by XRD and Scanning Electron Microscopy (SEM). The XRD results showed that a pure SrAl2O4 phase formed at 900 ℃ by templating method. The SEM morphologies of the obtained phosphors prepared by templating synthesis were uniform and porous multicrystalline with average diameter size of 5 μm. The broad-band UV-excited SrAl2O4∶Eu, Dy phosphor derived from a mosoporous precursor was observed at λmax=515 nm due to the transitions from the 4f65d1 to the 4f7 configurations of Eu2+ ion. The main excitation and emission intensity of the phosphor with this method were stronger than that obtained by solid state reaction method. And the obtained long-lasting phosphor with this method revealed a better afterglow compared to the phosphor prepared through solid state reaction method.
基金Project supported by the National Natural Science Foundation of China(51302311)the National High Technology Research and Development Program of China(2009AA03Z211)
文摘Eu-doped Ca-α-SiAlON yellow phosphors, with the compositions Ca0.72Eu0.08Si9.56Al2.44O0.84N15.16, were prepared by a highly efficient combustion synthesis method. By optimizing the starting compositions of reactants and choosing appropriate post-annealing conditions, phase-pure, uniform and fine Ca-α-sialon:Eu2+ phosphors possessing the particle size ranging -3-5μm, and good luminescence properties with an intense emission band that peaks at 592 nm under n-UV or blue light excitation were ob-tained. The results indicated that combustion synthesis method was an energy efficient, time saving and low cost way to prepare Ca-α-SiAlON phosphors by controlling the mass ratio of comburents. A combination with post-annealing treatment was desired for further increase of the properties of Ca-α-SiAlON phosphors.
基金Project supported by National Natural Science Foundation of China (91123019)
文摘Eu3+ activated Ca4Yt(SiO4)60 phosphors were prepared by combustion synthesis method, and their morphologies and lu- minescent properties were investigated. Field scanning electron microscopy (FSEM) confirmed that the crystallite sizes of nanoparti- cles with narrow diameter ranging from 30 to 60 rim. The excitation spectra of CaaY6(SiO4)60:Etl3+ showed that there existed two strong excitation bands at around 399 nm (TFo----~SL6) and 469 nm (TF0---*SD2), which were consistent with the output wavelengths of near-UV and blue LEDs, respectively. The emission spectra of Ca4Y6(SiO4)60:Eu3+ were dominant by a red peak located at 614 nm due to the 5Do→7TF2 transition of Eu3+. With the increase of Eu3+concentration, the luminescence intensity of the red phosphor reached maximum and then decreased. The optimum concentration for Eug+in Ca4Y6(SiO4)60 was 21 mol.%.
基金Project supported by the Fundamental Research Funds for the Central Universities and Natural Science Basic Research Plan in Shaanxi Province of China (2009JQ6009)
文摘Ultrafine Y0.95–xGdxEu0.05Al3(BO3)4 phosphors with different Gd3+ concentrations were prepared by a solution combustion method, and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM). Results showed that the pure phase of YAl3(BO3)4 was obtained at 1000 oC and the prepared particle size varied with calcining temperatures. Photoluminescence spectra indicated that the dominant emission peak was observed at 612 nm due to the 5D0→7F2 transition of Eu3+. The luminescence intensity of ...
基金the National Natu-ral Science Foundation of China (No. 50204002)the National High-Tech Research and Development Program of China (No. 2001AA324080)
文摘The long afterglow phosphor CaAl2O4: Eu^2+, Nd^3+ was prepared by the high temperature solid-state reaction method, and the influence of La^3+ and Dy^3+ on the properties of the long afterglow phosphor was studied by X-ray diffiaction (XRD), photoluminescence (PL), and thermoluminescence (TL). The XRD pattem shows the host phase of CaAl2O4 is produced and no impurity phase appears. The peak wavelength of the phosphor does not vary with La^3+ and Dy^3+ doping. It implies that the crystal field, which affects the 5d electron states of Eu^2+, is not changed dramatically after doping of La^3+ and Dy^3+. The TL spectra indicate that the phosphor doped with La^3+ or Dy^3+ produces different depths of trap energy level. In the mechanism of long afterglow luminescence, it is considered that La^3+ or Dy^3+ works as trap energy level. The decay time lies on the number of electrons in the trap energy level and the rate of the electrons returning to the excitation level.
基金supported by High Technology Research and Development program foundation of China (2007AA06Z202) (863)Natural Science Foundation of Jilin Province of China (20070405)State Key Laboratory of Rare Earth Resource Utilization of China (R02020202K)
文摘CaAl2O4:Eu3+,R+(R=Li+,Na+,K+) red phosphors were synthesized by solid state reaction method.X-ray diffraction(XRD) and photoluminescence(PL) were employed to characterize their structural and luminescent properties.It was found that the optimal sintering temperature and sintering time were 1200 °C and 4 h,respectively.The optimal concentration of doped Eu3+ was 3 mol.%.Furthermore,under ultraviolet excitation with a wavelength of 254 nm,these samples showed red luminescence which were probably attributed to...
文摘The Ba x-0.05MgAl 10O 16+x∶Eu 2+ 0.05 (0.88≤x ≤1.02) phosphors with different Ba 2+ content and the Ba 0.85MgAl 10O 16.94∶Eu 2+ 0.09 phosphors with different fluxes (BaF 2, MgF 2, AlF 3, BaCl 2, MgCl 2, AlCl 3, H 3BO 3) were prepared by high temperature solid-state reaction method and their luminescence characteristics were studied under 254 nm excitation and vacuum ultraviolet (VUV) excitation. With the increase of the Ba 2+ content, there is an increase in the emission intensity, and when x=0.94, it reaches a maximum. Then, as the Ba 2+ content increases, the emission intensity slowly falls. The fluorides have better flux-effects than chlorides and H 3BO 3. The possible mechanism in the process of particle growth was discussed when fluorides were used as fluxes. The effect of the activator concentration on this system was also investigated. The quenching concentration is 0.13 mol in per mole host.