This paper describes the numerical calculations of gaseous reaction flows in a model of gas turbine combustors. The profiles of hydrodynamic and thermodynamic patterns in a three-dimensional combustor model are obtain...This paper describes the numerical calculations of gaseous reaction flows in a model of gas turbine combustors. The profiles of hydrodynamic and thermodynamic patterns in a three-dimensional combustor model are obtained by solving the governing differential transport equations. The well-established numerical prediction algorithm SIMPLE, the modified k-ε turbulence model and k-ε-g turbulent diffusion flame model have been adopted in computations. The β function has been selected as probability density function. The effect of combustion process on flow patterns has been investigated. The calculated results have been verified by experiments. They are in remarkably good agreement.展开更多
The flame quenching process in combustors was observed by high speed camera and Schlieren system, at the inflow conditions of Ma = 2.64, To = 1483K, P0 = 1.65 MPa, T = 724 K and P -- 76.3 kPa. Changing process of the ...The flame quenching process in combustors was observed by high speed camera and Schlieren system, at the inflow conditions of Ma = 2.64, To = 1483K, P0 = 1.65 MPa, T = 724 K and P -- 76.3 kPa. Changing process of the flame and shock structure in the combustor was clearly observed. The results revealed that the precom- bustion shock disappeared accompanied with the process in which the flame was blown out and withdrawed from the mainflow into the cavity and vanished after a short while. The time of quenching process was extended by the cavity flame holder, and the ability of flame holding was enhanced by arranging more cavities in the downstream as well. The flame was blown from the upstream to the downstream, so the flame in the downstream of the cavity was quenched out later than that in the upstream.展开更多
This paper experimentally studied the effect of CO_(2) opposing multiple jets on the thermoacoustic instability and NO_(x) emissions in a lean-premixed model combustor.The feasibility was verified from three variables...This paper experimentally studied the effect of CO_(2) opposing multiple jets on the thermoacoustic instability and NO_(x) emissions in a lean-premixed model combustor.The feasibility was verified from three variables:the CO_(2) jet flow rate,hole numbers,and hole diameters of the nozzles.Results indicate that the control effect of thermoacoustic instability and NO_x emissions show a reverse trend with the increase of open area ratio on the whole,and the optimal jet flow rate range is 1-4 L/min with CO_(2) opposing multiple jets.In this flow rate range,the amplitude and frequency of the dynamic pressure and heat release signals CH~* basically decrease as the CO_(2) flow rate increases,which avoids high-frequency and high-amplitude thermoacoustic instability.The amplitude-damped ratio of dynamic pressure and CH*can reach as high as 98.75% and 93.64% with an optimal open area ratio of 3.72%.NO_(x) emissions also decrease as the jet flow rate increases,and the maximum suppression ratio can reach 68.14%.Besides,the flame shape changes from a steep inverted "V" to a more flat "M",and the flame length will become shorter with CO_(2) opposing multiple jets.This research achieved the synchronous control of thermoacoustic instability and NO_(x) emissions,which could be a design reference for constructing a safer and cleaner combustor.展开更多
In the present paper,a sensitivity analysis of pollutants and pattern factor in a model combustor due to changes in the geometrical characteristics of stabilizing jets has been carried out.The exhaust pollutants inclu...In the present paper,a sensitivity analysis of pollutants and pattern factor in a model combustor due to changes in the geometrical characteristics of stabilizing jets has been carried out.The exhaust pollutants including NO_(x),CO and soot have been chosen due to their harmful effect on the environment.The pattern factor has been also considered owing to its impact on turbine blades.The geometrical characteristics comprise diameter,angle and position of stabilizing jets.Eulerian-Lagrangian approach has been employed to model liquid fuel injection and distribution,breakup and evaporation of droplets.For the analysis of reactive-spray flow characteristics,RANS approach,realizable k-εturbulence model,discrete ordinates radiative heat transfer model and steady flamelet combustion model together with the chemical reaction mechanism of diesel fuel(C_(10)H_(22))have been applied.NO_(x) modeling has been performed via post-processing.Sensitivity analysis is such that by making variations in the problem inputs(diameter,angle and position of jets)in an organized manner,the effects on the outputs(NO_(x),CO,soot and pattern factor)are predicted.The number and order of simulations are predicted by design of experiments and full factorial model.Results have been analyzed using analysis of variance.It has been observed that if interactions among the characteristics of jets are considered,it is possible to analyze the exhaust pollutants more accurately.In fact,by using the interactions,it is likely to find a point where all output parameters are improved.Results show that by considering interactions of stabilizing jet characteristics,the maximum values of NO_(x),CO,soot and pattern factor change from 13.927 ppm,11.198%mole fraction,2.877 ppm and 0.043 to 26.233 ppm,14.693%mole fraction,142.357 ppm and 0.060,respectively.Furthermore,the minimum values change from 5.819 ppm,7.568%mole fraction,0.013 ppm and 0.029 to 6.098 ppm,5.987%mole fraction,0.002 ppm and 0.027,respectively.展开更多
文摘This paper describes the numerical calculations of gaseous reaction flows in a model of gas turbine combustors. The profiles of hydrodynamic and thermodynamic patterns in a three-dimensional combustor model are obtained by solving the governing differential transport equations. The well-established numerical prediction algorithm SIMPLE, the modified k-ε turbulence model and k-ε-g turbulent diffusion flame model have been adopted in computations. The β function has been selected as probability density function. The effect of combustion process on flow patterns has been investigated. The calculated results have been verified by experiments. They are in remarkably good agreement.
基金supported by the National Natural Science Foundation of China (10902124)
文摘The flame quenching process in combustors was observed by high speed camera and Schlieren system, at the inflow conditions of Ma = 2.64, To = 1483K, P0 = 1.65 MPa, T = 724 K and P -- 76.3 kPa. Changing process of the flame and shock structure in the combustor was clearly observed. The results revealed that the precom- bustion shock disappeared accompanied with the process in which the flame was blown out and withdrawed from the mainflow into the cavity and vanished after a short while. The time of quenching process was extended by the cavity flame holder, and the ability of flame holding was enhanced by arranging more cavities in the downstream as well. The flame was blown from the upstream to the downstream, so the flame in the downstream of the cavity was quenched out later than that in the upstream.
基金supported by the National Science Fund for Distinguished Young Scholars (Grant No. 51825605)。
文摘This paper experimentally studied the effect of CO_(2) opposing multiple jets on the thermoacoustic instability and NO_(x) emissions in a lean-premixed model combustor.The feasibility was verified from three variables:the CO_(2) jet flow rate,hole numbers,and hole diameters of the nozzles.Results indicate that the control effect of thermoacoustic instability and NO_x emissions show a reverse trend with the increase of open area ratio on the whole,and the optimal jet flow rate range is 1-4 L/min with CO_(2) opposing multiple jets.In this flow rate range,the amplitude and frequency of the dynamic pressure and heat release signals CH~* basically decrease as the CO_(2) flow rate increases,which avoids high-frequency and high-amplitude thermoacoustic instability.The amplitude-damped ratio of dynamic pressure and CH*can reach as high as 98.75% and 93.64% with an optimal open area ratio of 3.72%.NO_(x) emissions also decrease as the jet flow rate increases,and the maximum suppression ratio can reach 68.14%.Besides,the flame shape changes from a steep inverted "V" to a more flat "M",and the flame length will become shorter with CO_(2) opposing multiple jets.This research achieved the synchronous control of thermoacoustic instability and NO_(x) emissions,which could be a design reference for constructing a safer and cleaner combustor.
文摘In the present paper,a sensitivity analysis of pollutants and pattern factor in a model combustor due to changes in the geometrical characteristics of stabilizing jets has been carried out.The exhaust pollutants including NO_(x),CO and soot have been chosen due to their harmful effect on the environment.The pattern factor has been also considered owing to its impact on turbine blades.The geometrical characteristics comprise diameter,angle and position of stabilizing jets.Eulerian-Lagrangian approach has been employed to model liquid fuel injection and distribution,breakup and evaporation of droplets.For the analysis of reactive-spray flow characteristics,RANS approach,realizable k-εturbulence model,discrete ordinates radiative heat transfer model and steady flamelet combustion model together with the chemical reaction mechanism of diesel fuel(C_(10)H_(22))have been applied.NO_(x) modeling has been performed via post-processing.Sensitivity analysis is such that by making variations in the problem inputs(diameter,angle and position of jets)in an organized manner,the effects on the outputs(NO_(x),CO,soot and pattern factor)are predicted.The number and order of simulations are predicted by design of experiments and full factorial model.Results have been analyzed using analysis of variance.It has been observed that if interactions among the characteristics of jets are considered,it is possible to analyze the exhaust pollutants more accurately.In fact,by using the interactions,it is likely to find a point where all output parameters are improved.Results show that by considering interactions of stabilizing jet characteristics,the maximum values of NO_(x),CO,soot and pattern factor change from 13.927 ppm,11.198%mole fraction,2.877 ppm and 0.043 to 26.233 ppm,14.693%mole fraction,142.357 ppm and 0.060,respectively.Furthermore,the minimum values change from 5.819 ppm,7.568%mole fraction,0.013 ppm and 0.029 to 6.098 ppm,5.987%mole fraction,0.002 ppm and 0.027,respectively.