Netizen Comments:●"Bigger cities ofer more opportunities for young people from smaller towns to find wll-paid jobs.Remaining in their hometowns may hamper their dreams for awealthier life-usually insmaller citie...Netizen Comments:●"Bigger cities ofer more opportunities for young people from smaller towns to find wll-paid jobs.Remaining in their hometowns may hamper their dreams for awealthier life-usually insmaller cities and towns,only those who come from means,resoures and connections can lead prosperouslives."●"People in small ities and towns now have sgnifcantly improved material ifestyles.But big ities may offer more diverse and numerous cultural acivitis,such as theater,concerts and exibitions,which are often scarce in smaller places."'展开更多
NI Ping is an anchorwoman for CCTV. Because of this, she wins a lot of admirers. Among them was a girl who devoted her life to following Ni’s career. She was Zhao Ying, a 15-year-old student at Beijing No. 80 Middle ...NI Ping is an anchorwoman for CCTV. Because of this, she wins a lot of admirers. Among them was a girl who devoted her life to following Ni’s career. She was Zhao Ying, a 15-year-old student at Beijing No. 80 Middle School. Her small bedroom is virtually a shrine to Ni Ping. Her bookcase is filled with videotapes and magnetic tapes of programs hosted by Ni. Ni’s photographs are all over the walls. In addition, Zhao had created her own newsletter about her idol called Ni Ping’s Feature. Below the title of the newsletter, Zhao had written the展开更多
The Place In some Shanghai restaurants,there are few sounds we want to hear more than that of tidy black-suited Japanese businesspeople pounding sake and being raucous.That's how you know you ve got a halfway dece...The Place In some Shanghai restaurants,there are few sounds we want to hear more than that of tidy black-suited Japanese businesspeople pounding sake and being raucous.That's how you know you ve got a halfway decent Japanese restaurant on your hands-these people like their home comforts,and are not wanting for restaurants catering to them in this city.展开更多
The Place In one form or another;Ken Walker has been helping homesick expats in Shanghai find a taste of home since Bubba's BBQ opened in Hongqiao in 2006.Sadly Bubba's exited the Shanghai dining scene,with Wa...The Place In one form or another;Ken Walker has been helping homesick expats in Shanghai find a taste of home since Bubba's BBQ opened in Hongqiao in 2006.Sadly Bubba's exited the Shanghai dining scene,with Walker moving on to Tex-Mex and Mexican food at Jalapeno,which was then renamed Bordertown on Weihai Lu(now closed).After a brief hiatus,the Bordertown team is back in action with a casual stall within the More Than Eat Complex on Julu Lu.展开更多
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea...Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.展开更多
BACKGROUND The incidence and mortality rate of colorectal cancer progressively increase with age and become particularly prominent after the age of 50 years.Therefore,the population that is≥50 years in age requires l...BACKGROUND The incidence and mortality rate of colorectal cancer progressively increase with age and become particularly prominent after the age of 50 years.Therefore,the population that is≥50 years in age requires long-term and regular colonoscopies.Uncomfortable bowel preparation is the main reason preventing patients from undergoing regular colonoscopies.The standard bowel preparation regimen of 4-L polyethylene glycol(PEG)is effective but poorly tolerated.AIM To investigate an effective and comfortable bowel preparation regimen for hospitalized patients≥50 years in age.METHODS Patients were randomly assigned to group 1(2-L PEG+30-mL lactulose+a lowresidue diet)or group 2(4-L PEG).Adequate bowel preparation was defined as a Boston bowel preparation scale(BBPS)score of≥6,with a score of≥2 for each segment.Non-inferiority was prespecified with a margin of 10%.Additionally,the degree of comfort was assessed based on the comfort questionnaire.RESULTS The proportion of patients with a BBPS score of≥6 in group 1 was not significantly different from that in group 2,as demonstrated by intention-to-treat(91.2%vs 91.0%,P=0.953)and per-protocol(91.8%vs 91.0%,P=0.802)analyses.Furthermore,in patients≥75 years in age,the proportion of BBPS scores of≥6 in group 1 was not significantly different from that in group 2(90.9%vs 97.0%,P=0.716).Group 1 had higher comfort scores(8.85±1.162 vs 7.59±1.735,P<0.001),longer sleep duration(6.86±1.204 h vs 5.80±1.730 h,P<0.001),and fewer awakenings(1.42±1.183 vs 2.04±1.835,P=0.026)than group 2.CONCLUSION For hospitalized patients≥50 years in age,the bowel preparation regimen comprising 2-L PEG+30-mL lactulose+a low-residue diet produced a cleanse that was as effective as the 4-L PEG regimen and even provided better comfort.展开更多
Nowadays, the global climate is constantly being destroyed and the fluctuations in ambient temperature are becoming more frequent. However, conventional single-mode thermal management strategies(heating or cooling) fa...Nowadays, the global climate is constantly being destroyed and the fluctuations in ambient temperature are becoming more frequent. However, conventional single-mode thermal management strategies(heating or cooling) failed to resolve such dynamic temperature changes. Moreover, developing thermal management devices capable of accommodating these temperature variations while remaining simple to fabricate and durable has remained a formidable obstacle. To address these bottlenecks, we design and successfully fabricate a novel dual-mode hierarchical(DMH) composite film featuring a micronanofiber network structure, achieved through a straightforward two-step continuous electrospinning process. In cooling mode, it presents a high solar reflectivity of up to 97.7% and an excellent atmospheric transparent window(ATW) infrared emissivity of up to 98.9%. Noted that this DMH film could realize a cooling of 8.1 ℃ compared to the ambient temperature outdoors. In heating mode, it also exhibits a high solar absorptivity of 94.7% and heats up to 11.9 ℃ higher than black cotton fabric when utilized by individuals. In practical application scenarios, a seamless transition between efficient cooling and heating is achieved by simply flipping the film. More importantly, the DMH film combining the benefits of composites demonstrates portability, durability, and easy-cleaning, promising to achieve large-scale production and use of thermally managed textiles in the future. The energy savings offered by film applications provide a viable solution for the early realization of carbon neutrality.展开更多
Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of th...Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.展开更多
Clothing plays a vital role in managing body temperature and ensuring optimal thermal comfort in our daily lives.A recent research article on Science highlights a groundbreaking development in the realm of intelligent...Clothing plays a vital role in managing body temperature and ensuring optimal thermal comfort in our daily lives.A recent research article on Science highlights a groundbreaking development in the realm of intelligent thermoregulatory apparel—a self-sustaining,solar-powered garment designed to extend the range of thermal comfort throughout the entire day.This work marks a significant advancement in the field of smart textiles,showcasing the potential to enhance the adaptability of clothing in response to varying environmental conditions.展开更多
Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and...Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles.展开更多
The increasing demand for green spaces in cities underscores the urgent need for sustainable solutions to reduce the ecological impact of urban areas.This research focuses on converting unused rooftops into extensive ...The increasing demand for green spaces in cities underscores the urgent need for sustainable solutions to reduce the ecological impact of urban areas.This research focuses on converting unused rooftops into extensive green roofs in Nador,Morocco,offering an innovative approach to enhancing outdoor thermal comfort in this region.Several advanced techniques were used,including photogrammetric restitution(for creating land use maps),integration of light detection and ranging data(for three-dimensional urban modeling),and meteorological data collection(for modeling urban climate conditions).The urban-multiscale-environmental-predictor solar and longwave environmental irradiance geometry(UMEP-SOLWEIG)model was crucial for precisely evaluating the thermal performance of green roofs and their influence on urban microclimates.This model considers considered various parameters,such as the sky view factor,wall height and aspect,and shading conditions,for accurate,comprehensive analysis.Additionally,for accurate,comprehensive analysis,a comparative evaluation was performed between the UMEP-SOLWEIG and ENVI-met models to assess the UMEP SOLWEIG results.The findings were notable,demonstrating a substantial reduction(averaging over 3°C)in the mean radiant temperature on 60%of rooftops,covering 55%of the total surface area.This highlighted the effectiveness of green roofs in improving outdoor thermal comfort.Furthermore,green roofs were closely associated with reductions in air-conditioning energy consumption,with considerable reductions ranging from 17.53%to 43.82%.These savings translated to estimated financial benefits ranging from USD 1.63-4.07 million.These figures clearly verified the notable economic impact of green roofs despite their initially high costs(approximately USD 84.44 million).These potential long-term savings indicated that these investments are financially viable in the long run.The collected data were used to create thermal maps of the area using geographic-information-system tools.A thermal cadaster specific to green roofs was also developed,accessible online through Web mapping.Overall,this approach facilitates decision-making in urban planning by providing visual information on thermal variations,thereby aiding in the precise planning of measures against urban heat and promoting the use of green roofs to reduce environmental impact.展开更多
At present,air handling units are usually used indoors to improve the indoor environment quality.However,while introducing fresh air to improve air quality,air velocity has a certain impact on the occupants’thermal c...At present,air handling units are usually used indoors to improve the indoor environment quality.However,while introducing fresh air to improve air quality,air velocity has a certain impact on the occupants’thermal comfort.Therefore,it is necessary to explore the optimization of air-fluid-body interaction dynamics.In this study,the indoor air flow was changed by changing the opening and closing degree of the blower,and the thermal manikin is introduced to objectively evaluate the human thermal comfort under different air velocities.The main experimental results show that the air change rate increases with the increase of the opening and closing degree of the blower considering an ACH(air changes per hour)range between 3.8 and 10.For a better prediction,a linear correlation with a coefficient of 0.995 is proposed.As the blower’s opening is adjusted to 20%,25%,30%,35%,and 40%,the air velocity sensor positioned directly beneath the air inlet records average velocities of 0.19,0.20,0.21,0.28,and 0.34 m/s over four hours,respectively.Observations on thermal comfort and the average sensation experienced by individuals indicate an initial increase followed by a decline when the blower’s operation begins,with optimal conditions achieved at a 35%opening.These findings offer valuable insights for future indoor air ventilation and heat transfer design strategies.展开更多
Soft and wearable electronics for monitoring health in hot outdoor environments are highly desirable due to their effective-ness in safeguarding individuals against escalating heat-related illnesses associated with gl...Soft and wearable electronics for monitoring health in hot outdoor environments are highly desirable due to their effective-ness in safeguarding individuals against escalating heat-related illnesses associated with global climate change.However,traditional wearable devices have limitations when exposed to outdoor solar radiation,including reduced electrical perfor-mance,shortened lifespan,and the risk of skin burns.In this work,we introduce a novel approach known as the cooling E-textile(CET),which ensures reliable and accurate tracking of uninterrupted physiological signals in intense external conditions while maintaining the device at a consistently cool temperature.Through a co-designed architecture comprising a spectrally selective passive cooling structure and intricate hierarchical sensing construction,the monolithic integrated CET demonstrates superior sensitivity(6.67×10^(3)kPa^(-1)),remarkable stability,and excellent wearable properties,such as flexibility,lightweightness,and thermal comfort,while achieving maximum temperature reduction of 21°C.In contrast to the limitations faced by existing devices that offer low signal quality during overheating,CET presents accurately stable performance output even in rugged external environments.This work presents an innovative method for effective thermal management in next-generation textile electronics tailored for outdoor applications.展开更多
Development of urban human settlement environments(HSEs)is an integral part of promoting high-quality and sustainable regional development and constructing a beautiful China.The city of Lanzhou,located at the geometri...Development of urban human settlement environments(HSEs)is an integral part of promoting high-quality and sustainable regional development and constructing a beautiful China.The city of Lanzhou,located at the geometric center of China,is the only provincial capital traversed by the Yellow River.Given the constraints posed by the valley topography and the need for economic development,the development of this HSE,which is located within an arid region,poses considerable challenges.Evidently,an understanding of the evolution of HSEs and drivers of changes in them contributes to high-quality,sustainable urban development in arid and semi-arid regions.An analytical model was developed using the parameters of relief degree of land surface,human comfort days,the land cover index,nighttime light index,and precipitation.This model was used in combination with population density and the gross domestic product to analyze the spatial distribution of Lanzhou's HSE and its drivers.The results showed that landscapes in Lanzhou underwent significant changes between 2000 and 2022,with an increase in building-up land(+0.946%),cultivated land(+0.134%),and forest land(+0.018%)and a decrease in grassland(-1.10%).There was significant outward expansion of the main urban zone of Lanzhou and of various county towns,with the increase in building-up land being most prominent.During this period,there were significant changes in the periphery of the core urban area and county towns in Lanzhou,with decreases moving from the urban center(the highest value)to the surrounding areas(Yongdeng County had the lowest value).The correlation between the HSE and population density grew stronger in Anning and Chengguan Districts but became weaker in Xigu and Qilihe Districts.Spatiotemporal variations in the HSE were primarily caused by climate change,followed by human activities,and were also influenced by the valley topography.Overall,the spatial distribution of population density and the HSE in Lanzhou demonstrated good consistency under the in-fluence of economic development and urbanization.展开更多
Mucosal ulcers are a common yet often overlooked complication during orthodontic treatment,significantly impacting patient comfort and compliance.This letter aims to highlight the prevalence,potential causes,and manag...Mucosal ulcers are a common yet often overlooked complication during orthodontic treatment,significantly impacting patient comfort and compliance.This letter aims to highlight the prevalence,potential causes,and management strategies for mucosal ulcers in orthodontic patients.By reviewing recent literature and clinical observations,we underscore the necessity for proactive measures and tailored interventions to mitigate the incidence and severity of these lesions.Emphasizing the role of patient education and the use of protective devices,we call for a multidisciplinary approach to enhance patient care and treatment outcomes.This discussion is particularly relevant in the context of evolving orthodontic techniques and materials,which necessitate continuous adaptation of clinical practices to ensure patient safety and well-being.展开更多
This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort o...This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material,such as for thermal upgrades,which consequently incurs additional economic costs.It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions,considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in buildings.In addition,it explores the methods and mechanisms for modeling the operating modes of electric boilers used to collectively improve energy efficiency and indoor climatic conditions.Using the developed mathematical models,the study examines the dynamic states of building energy supply systems and provides recommendations for improving their efficiency.These dynamic models are executed in software environments such as MATLAB/Simscape and Python,where the component detailing schemes for various types of controllers are demonstrated.Additionally,controllers based on reinforcement learning(RL)displayed more adaptive load level management.These RL-based controllers can lower instantaneous power usage by up to 35%,reduce absolute deviations from a comfortable temperature nearly by half,and cut down energy consumption by approximately 1%while maintaining comfort.When the energy source produces a constant energy amount,the RL-based heat controllermore effectively maintains the temperature within the set range,preventing overheating.In conclusion,the introduced energydynamic building model and its software implementation offer a versatile tool for researchers,enabling the simulation of various energy supply systems to achieve optimal energy efficiency and indoor climate control in buildings.展开更多
Discharging patients directly to home from the intensive care unit(ICU)is becoming a new trend.This review examines the feasibility,benefits,challenges,and considerations of directly discharging ICU patients.By analyz...Discharging patients directly to home from the intensive care unit(ICU)is becoming a new trend.This review examines the feasibility,benefits,challenges,and considerations of directly discharging ICU patients.By analyzing available evidence and healthcare professionals'experiences,the review explores the potential impacts on patient outcomes and healthcare systems.The practice of direct discharge from the ICU presents both opportunities and complexities.While it can potentially reduce costs,enhance patient comfort,and mitigate complications linked to extended hospitalization,it necessitates meticulous patient selection and robust post-discharge support mechanisms.Implementing this strategy successfully mandates the availability of home-based care services and a careful assessment of the patient's readiness for the transition.Through critical evaluation of existing literature,this review underscores the significance of tailored patient selection criteria and comprehensive post-discharge support systems to ensure patient safety and optimal recovery.The insights provided contribute evidence-based recommendations for refining the direct discharge approach,fostering improved patient outcomes,heightened satisfaction,and streamlined healthcare processes.Ultimately,the review seeks to balance patientcentered care and effective resource utilization within ICU discharge strategies.展开更多
In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood ...In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.展开更多
文摘Netizen Comments:●"Bigger cities ofer more opportunities for young people from smaller towns to find wll-paid jobs.Remaining in their hometowns may hamper their dreams for awealthier life-usually insmaller cities and towns,only those who come from means,resoures and connections can lead prosperouslives."●"People in small ities and towns now have sgnifcantly improved material ifestyles.But big ities may offer more diverse and numerous cultural acivitis,such as theater,concerts and exibitions,which are often scarce in smaller places."'
文摘NI Ping is an anchorwoman for CCTV. Because of this, she wins a lot of admirers. Among them was a girl who devoted her life to following Ni’s career. She was Zhao Ying, a 15-year-old student at Beijing No. 80 Middle School. Her small bedroom is virtually a shrine to Ni Ping. Her bookcase is filled with videotapes and magnetic tapes of programs hosted by Ni. Ni’s photographs are all over the walls. In addition, Zhao had created her own newsletter about her idol called Ni Ping’s Feature. Below the title of the newsletter, Zhao had written the
文摘The Place In some Shanghai restaurants,there are few sounds we want to hear more than that of tidy black-suited Japanese businesspeople pounding sake and being raucous.That's how you know you ve got a halfway decent Japanese restaurant on your hands-these people like their home comforts,and are not wanting for restaurants catering to them in this city.
文摘The Place In one form or another;Ken Walker has been helping homesick expats in Shanghai find a taste of home since Bubba's BBQ opened in Hongqiao in 2006.Sadly Bubba's exited the Shanghai dining scene,with Walker moving on to Tex-Mex and Mexican food at Jalapeno,which was then renamed Bordertown on Weihai Lu(now closed).After a brief hiatus,the Bordertown team is back in action with a casual stall within the More Than Eat Complex on Julu Lu.
基金support from the Research Grants Council of the Hong Kong Special Administrative Region,China(PolyU152052/21E)Green Tech Fund of Hong Kong(Project No.:GTF202220106)+1 种基金Innovation and Technology Fund of the Hong Kong Special Administrative Region,China(ITP/018/21TP)PolyU Endowed Young Scholars Scheme(Project No.:84CC).
文摘Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
基金The study was approved by the Ethics Committee of Beijing Tongren Hospital Affiliated to Capital Medical University(Approval No.TRECKY2021-227).
文摘BACKGROUND The incidence and mortality rate of colorectal cancer progressively increase with age and become particularly prominent after the age of 50 years.Therefore,the population that is≥50 years in age requires long-term and regular colonoscopies.Uncomfortable bowel preparation is the main reason preventing patients from undergoing regular colonoscopies.The standard bowel preparation regimen of 4-L polyethylene glycol(PEG)is effective but poorly tolerated.AIM To investigate an effective and comfortable bowel preparation regimen for hospitalized patients≥50 years in age.METHODS Patients were randomly assigned to group 1(2-L PEG+30-mL lactulose+a lowresidue diet)or group 2(4-L PEG).Adequate bowel preparation was defined as a Boston bowel preparation scale(BBPS)score of≥6,with a score of≥2 for each segment.Non-inferiority was prespecified with a margin of 10%.Additionally,the degree of comfort was assessed based on the comfort questionnaire.RESULTS The proportion of patients with a BBPS score of≥6 in group 1 was not significantly different from that in group 2,as demonstrated by intention-to-treat(91.2%vs 91.0%,P=0.953)and per-protocol(91.8%vs 91.0%,P=0.802)analyses.Furthermore,in patients≥75 years in age,the proportion of BBPS scores of≥6 in group 1 was not significantly different from that in group 2(90.9%vs 97.0%,P=0.716).Group 1 had higher comfort scores(8.85±1.162 vs 7.59±1.735,P<0.001),longer sleep duration(6.86±1.204 h vs 5.80±1.730 h,P<0.001),and fewer awakenings(1.42±1.183 vs 2.04±1.835,P=0.026)than group 2.CONCLUSION For hospitalized patients≥50 years in age,the bowel preparation regimen comprising 2-L PEG+30-mL lactulose+a low-residue diet produced a cleanse that was as effective as the 4-L PEG regimen and even provided better comfort.
基金financially Fundamental Research Funds for the Central Universities (2232021G-04 and 2232020D-20)Student Innovation Fund of Donghua University (GSIF-DH-M-2021003)。
文摘Nowadays, the global climate is constantly being destroyed and the fluctuations in ambient temperature are becoming more frequent. However, conventional single-mode thermal management strategies(heating or cooling) failed to resolve such dynamic temperature changes. Moreover, developing thermal management devices capable of accommodating these temperature variations while remaining simple to fabricate and durable has remained a formidable obstacle. To address these bottlenecks, we design and successfully fabricate a novel dual-mode hierarchical(DMH) composite film featuring a micronanofiber network structure, achieved through a straightforward two-step continuous electrospinning process. In cooling mode, it presents a high solar reflectivity of up to 97.7% and an excellent atmospheric transparent window(ATW) infrared emissivity of up to 98.9%. Noted that this DMH film could realize a cooling of 8.1 ℃ compared to the ambient temperature outdoors. In heating mode, it also exhibits a high solar absorptivity of 94.7% and heats up to 11.9 ℃ higher than black cotton fabric when utilized by individuals. In practical application scenarios, a seamless transition between efficient cooling and heating is achieved by simply flipping the film. More importantly, the DMH film combining the benefits of composites demonstrates portability, durability, and easy-cleaning, promising to achieve large-scale production and use of thermally managed textiles in the future. The energy savings offered by film applications provide a viable solution for the early realization of carbon neutrality.
基金Supported by National Natural Science Foundation of China (Grant No.11672127)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University of China (Grant No.YZ2020266)+3 种基金Advance Research Special Technology Project of Army Equipment of China (Grant No.AGA19001)Innovation Fund Project of China Aerospace 1st Academy (Grant No.CHC20001)Fundamental Research Funds for the Central Universities of China (Grant No.NP2022408)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of China (Grant No.SJCX23_1903)。
文摘Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.
基金The National Natural Science Foundation of China(Grant no.62175082)Multidisciplinary Research Support Program of Huazhong University of Science and Technology(Grant no.2023JCYJ039)National Key Research and Development Program of China(Grant no.2022YFB3805800).
文摘Clothing plays a vital role in managing body temperature and ensuring optimal thermal comfort in our daily lives.A recent research article on Science highlights a groundbreaking development in the realm of intelligent thermoregulatory apparel—a self-sustaining,solar-powered garment designed to extend the range of thermal comfort throughout the entire day.This work marks a significant advancement in the field of smart textiles,showcasing the potential to enhance the adaptability of clothing in response to varying environmental conditions.
基金supported by the Imperial College Research Fellowship(ICRF 2022-2026)。
文摘Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles.
文摘The increasing demand for green spaces in cities underscores the urgent need for sustainable solutions to reduce the ecological impact of urban areas.This research focuses on converting unused rooftops into extensive green roofs in Nador,Morocco,offering an innovative approach to enhancing outdoor thermal comfort in this region.Several advanced techniques were used,including photogrammetric restitution(for creating land use maps),integration of light detection and ranging data(for three-dimensional urban modeling),and meteorological data collection(for modeling urban climate conditions).The urban-multiscale-environmental-predictor solar and longwave environmental irradiance geometry(UMEP-SOLWEIG)model was crucial for precisely evaluating the thermal performance of green roofs and their influence on urban microclimates.This model considers considered various parameters,such as the sky view factor,wall height and aspect,and shading conditions,for accurate,comprehensive analysis.Additionally,for accurate,comprehensive analysis,a comparative evaluation was performed between the UMEP-SOLWEIG and ENVI-met models to assess the UMEP SOLWEIG results.The findings were notable,demonstrating a substantial reduction(averaging over 3°C)in the mean radiant temperature on 60%of rooftops,covering 55%of the total surface area.This highlighted the effectiveness of green roofs in improving outdoor thermal comfort.Furthermore,green roofs were closely associated with reductions in air-conditioning energy consumption,with considerable reductions ranging from 17.53%to 43.82%.These savings translated to estimated financial benefits ranging from USD 1.63-4.07 million.These figures clearly verified the notable economic impact of green roofs despite their initially high costs(approximately USD 84.44 million).These potential long-term savings indicated that these investments are financially viable in the long run.The collected data were used to create thermal maps of the area using geographic-information-system tools.A thermal cadaster specific to green roofs was also developed,accessible online through Web mapping.Overall,this approach facilitates decision-making in urban planning by providing visual information on thermal variations,thereby aiding in the precise planning of measures against urban heat and promoting the use of green roofs to reduce environmental impact.
基金supported by the China Scholarship Council(Grant Number 202208120025).
文摘At present,air handling units are usually used indoors to improve the indoor environment quality.However,while introducing fresh air to improve air quality,air velocity has a certain impact on the occupants’thermal comfort.Therefore,it is necessary to explore the optimization of air-fluid-body interaction dynamics.In this study,the indoor air flow was changed by changing the opening and closing degree of the blower,and the thermal manikin is introduced to objectively evaluate the human thermal comfort under different air velocities.The main experimental results show that the air change rate increases with the increase of the opening and closing degree of the blower considering an ACH(air changes per hour)range between 3.8 and 10.For a better prediction,a linear correlation with a coefficient of 0.995 is proposed.As the blower’s opening is adjusted to 20%,25%,30%,35%,and 40%,the air velocity sensor positioned directly beneath the air inlet records average velocities of 0.19,0.20,0.21,0.28,and 0.34 m/s over four hours,respectively.Observations on thermal comfort and the average sensation experienced by individuals indicate an initial increase followed by a decline when the blower’s operation begins,with optimal conditions achieved at a 35%opening.These findings offer valuable insights for future indoor air ventilation and heat transfer design strategies.
基金supported by National Natural Science Foundation of China(NSFC)(Grant No.62171094,62175026,62175082)Project of the Sichuan provincial science and technology(Grant No.24NSFSC5775,24NSFSC1465)+2 种基金National Key Research and Development Program of China(Grant No.2022YFB3805800,2023YFB3611400)Multidisciplinary Research Support Program of Huazhong University of Science and Technology(Grant No.2023JCYJ039)Aeronautical Science Foundation of China(Grant No.20230024080001).
文摘Soft and wearable electronics for monitoring health in hot outdoor environments are highly desirable due to their effective-ness in safeguarding individuals against escalating heat-related illnesses associated with global climate change.However,traditional wearable devices have limitations when exposed to outdoor solar radiation,including reduced electrical perfor-mance,shortened lifespan,and the risk of skin burns.In this work,we introduce a novel approach known as the cooling E-textile(CET),which ensures reliable and accurate tracking of uninterrupted physiological signals in intense external conditions while maintaining the device at a consistently cool temperature.Through a co-designed architecture comprising a spectrally selective passive cooling structure and intricate hierarchical sensing construction,the monolithic integrated CET demonstrates superior sensitivity(6.67×10^(3)kPa^(-1)),remarkable stability,and excellent wearable properties,such as flexibility,lightweightness,and thermal comfort,while achieving maximum temperature reduction of 21°C.In contrast to the limitations faced by existing devices that offer low signal quality during overheating,CET presents accurately stable performance output even in rugged external environments.This work presents an innovative method for effective thermal management in next-generation textile electronics tailored for outdoor applications.
基金supported by Longyuan Youth Innovation and Entrepreneurship Talent Individual Project of Gansu Province in 2023 (Zhu Rong)Innovative Development Special Project of China Meteorological Administration (CXFZ2023J040)Science and Technology Plan Project of Gansu Province (22JR4ZA103)
文摘Development of urban human settlement environments(HSEs)is an integral part of promoting high-quality and sustainable regional development and constructing a beautiful China.The city of Lanzhou,located at the geometric center of China,is the only provincial capital traversed by the Yellow River.Given the constraints posed by the valley topography and the need for economic development,the development of this HSE,which is located within an arid region,poses considerable challenges.Evidently,an understanding of the evolution of HSEs and drivers of changes in them contributes to high-quality,sustainable urban development in arid and semi-arid regions.An analytical model was developed using the parameters of relief degree of land surface,human comfort days,the land cover index,nighttime light index,and precipitation.This model was used in combination with population density and the gross domestic product to analyze the spatial distribution of Lanzhou's HSE and its drivers.The results showed that landscapes in Lanzhou underwent significant changes between 2000 and 2022,with an increase in building-up land(+0.946%),cultivated land(+0.134%),and forest land(+0.018%)and a decrease in grassland(-1.10%).There was significant outward expansion of the main urban zone of Lanzhou and of various county towns,with the increase in building-up land being most prominent.During this period,there were significant changes in the periphery of the core urban area and county towns in Lanzhou,with decreases moving from the urban center(the highest value)to the surrounding areas(Yongdeng County had the lowest value).The correlation between the HSE and population density grew stronger in Anning and Chengguan Districts but became weaker in Xigu and Qilihe Districts.Spatiotemporal variations in the HSE were primarily caused by climate change,followed by human activities,and were also influenced by the valley topography.Overall,the spatial distribution of population density and the HSE in Lanzhou demonstrated good consistency under the in-fluence of economic development and urbanization.
文摘Mucosal ulcers are a common yet often overlooked complication during orthodontic treatment,significantly impacting patient comfort and compliance.This letter aims to highlight the prevalence,potential causes,and management strategies for mucosal ulcers in orthodontic patients.By reviewing recent literature and clinical observations,we underscore the necessity for proactive measures and tailored interventions to mitigate the incidence and severity of these lesions.Emphasizing the role of patient education and the use of protective devices,we call for a multidisciplinary approach to enhance patient care and treatment outcomes.This discussion is particularly relevant in the context of evolving orthodontic techniques and materials,which necessitate continuous adaptation of clinical practices to ensure patient safety and well-being.
文摘This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material,such as for thermal upgrades,which consequently incurs additional economic costs.It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions,considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in buildings.In addition,it explores the methods and mechanisms for modeling the operating modes of electric boilers used to collectively improve energy efficiency and indoor climatic conditions.Using the developed mathematical models,the study examines the dynamic states of building energy supply systems and provides recommendations for improving their efficiency.These dynamic models are executed in software environments such as MATLAB/Simscape and Python,where the component detailing schemes for various types of controllers are demonstrated.Additionally,controllers based on reinforcement learning(RL)displayed more adaptive load level management.These RL-based controllers can lower instantaneous power usage by up to 35%,reduce absolute deviations from a comfortable temperature nearly by half,and cut down energy consumption by approximately 1%while maintaining comfort.When the energy source produces a constant energy amount,the RL-based heat controllermore effectively maintains the temperature within the set range,preventing overheating.In conclusion,the introduced energydynamic building model and its software implementation offer a versatile tool for researchers,enabling the simulation of various energy supply systems to achieve optimal energy efficiency and indoor climate control in buildings.
文摘Discharging patients directly to home from the intensive care unit(ICU)is becoming a new trend.This review examines the feasibility,benefits,challenges,and considerations of directly discharging ICU patients.By analyzing available evidence and healthcare professionals'experiences,the review explores the potential impacts on patient outcomes and healthcare systems.The practice of direct discharge from the ICU presents both opportunities and complexities.While it can potentially reduce costs,enhance patient comfort,and mitigate complications linked to extended hospitalization,it necessitates meticulous patient selection and robust post-discharge support mechanisms.Implementing this strategy successfully mandates the availability of home-based care services and a careful assessment of the patient's readiness for the transition.Through critical evaluation of existing literature,this review underscores the significance of tailored patient selection criteria and comprehensive post-discharge support systems to ensure patient safety and optimal recovery.The insights provided contribute evidence-based recommendations for refining the direct discharge approach,fostering improved patient outcomes,heightened satisfaction,and streamlined healthcare processes.Ultimately,the review seeks to balance patientcentered care and effective resource utilization within ICU discharge strategies.
文摘In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.