A new muon beam facility,called the Experimental Muon Source(EMuS),was proposed for construction at the China Spallation Neutron Source(CSNS).The design of the complex muon beamlines for the EMuS baseline scheme,which...A new muon beam facility,called the Experimental Muon Source(EMuS),was proposed for construction at the China Spallation Neutron Source(CSNS).The design of the complex muon beamlines for the EMuS baseline scheme,which is based on superconducting solenoids,superferric dipoles and room-temperature magnets,is presented herein.Various muon beams,including surface muons,decay muons and low energy muons,have been developed for multipurpose applications.The optics design and simulation results of the trunk beamline and branch beamlines are presented.With a proton beam power of 25 kW at a standalone target station that consists of a conical graphite target and high-field superconducting solenoids,the muon beam intensity in the trunk beamline varies from 10^(7)/s for surface muons to 10^(10)/s for high-momentum decay muons.And at the endstations,these values vary from 10^(5)/s for surface muons to 10^(8)/s for decay muons.展开更多
Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The dete...Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The detector underwent muon position-resolution tests at the Institute of Modern Physics in Lanzhou using a multiwire drift chamber(MWDC)experimental platform.In the simulation,the same structural and performance parameters were maintained to ensure the reliability of the simulation results.The Gaussian process regression(GPR)algorithm was used as the position-reconstruction algorithm owing to its optimal performance.The results of the Time Difference of Arrival algorithm were incorporated as one of the features of the GPR model to reconstruct the muon hit positions.The accuracy of the position reconstruction was evaluated by comparing the experimental results with Geant4 simulation results.In the simulation,large-area plastic scintillator detectors achieved a position resolution better than 20 mm.In the experimental-platform tests,the position resolutions of the test detectors were 27.9 mm.We also analyzed factors affecting the position resolution,including the critical angle of the total internal reflection of the photomultiplier tubes and distribution of muons in the MWDC.Simulations were performed to image both large objects and objects with different atomic numbers.The results showed that the system could image high-and low-Z materials in the constructed model and distinguish objects with significant density differences.This study demonstrates the feasibility of the proposed system,thereby providing a new detector system for muon-imaging applications.展开更多
A recent experimental finding replicated an earlier research result, both of which demonstrated conflict with a specific Standard Model prediction. The “Muon g - 2” studies have indicated that the degree of muon pre...A recent experimental finding replicated an earlier research result, both of which demonstrated conflict with a specific Standard Model prediction. The “Muon g - 2” studies have indicated that the degree of muon precession predicted by the Model is not the same as observed. The researchers offer many posteriori atheoretical hypotheses as possible explanations of their findings, but no fundamental theoretical understanding of the near discovery is among them. This article describes both an explication for the unexpected result and describes its underlying mechanism based on an existing cosmological theory, the Probabilistic Spacetime Theory. The paper also discusses the potential value of this theory.展开更多
This study aimed to investigate the relationship between atmospheric conditions and cosmic ray (CR) muons using daily and monthly CR data collected by the KAAU muon detector in Jeddah, Saudi Arabia between 2007 and 20...This study aimed to investigate the relationship between atmospheric conditions and cosmic ray (CR) muons using daily and monthly CR data collected by the KAAU muon detector in Jeddah, Saudi Arabia between 2007 and 2012. Specifically, the study examined the effects of atmospheric pressure, air temperature, and relative humidity on CR muons at different time scales (annual, seasonal, and monthly). The results of the analysis revealed that atmospheric pressure and air temperature had a negative impact on CR muons, while relative humidity had a positive impact. Although air temperature and relative humidity had small mean values across all time scales, their coefficients varied significantly from month to month and season to season. In addition, the study conducted multivariable correlation analyses for each day, which showed that pressure coefficients had consistently negative mean values, while the temperature and humidity coefficients had varying effects, ranging from positive to negative values. The reasons for the variations in the coefficients are not yet fully understood, but the study proposed several possible terrestrial and extraterrestrial explanations. These findings provide important insights into the complex interactions between the Earth’s atmosphere and cosmic rays, which can contribute to a better understanding of the potential impacts of cosmic rays on the Earth’s climate and environment.展开更多
It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It ...It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It is the purpose of this paper to calculate the charges and the size of the electron neutrino, the muon neutrino, and the tau neutrino based on data available of their rest masses using the charges and rest masses of the electron, muon, and tau leptons from the Standard Model of Particle Physics Table. We base our calculations on the premise that Energy can create both Mass and Charge. Charge by itself is not conserved in any process that produces neutrinos. Only Total Energy is conserved.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11527811 and 12035017).
文摘A new muon beam facility,called the Experimental Muon Source(EMuS),was proposed for construction at the China Spallation Neutron Source(CSNS).The design of the complex muon beamlines for the EMuS baseline scheme,which is based on superconducting solenoids,superferric dipoles and room-temperature magnets,is presented herein.Various muon beams,including surface muons,decay muons and low energy muons,have been developed for multipurpose applications.The optics design and simulation results of the trunk beamline and branch beamlines are presented.With a proton beam power of 25 kW at a standalone target station that consists of a conical graphite target and high-field superconducting solenoids,the muon beam intensity in the trunk beamline varies from 10^(7)/s for surface muons to 10^(10)/s for high-momentum decay muons.And at the endstations,these values vary from 10^(5)/s for surface muons to 10^(8)/s for decay muons.
基金supported by the National Natural Science Foundation of China(Nos.12275120,11875163)Ministry of Science and Technology of China(No.2020YFE0202001)+1 种基金Science and Technology Innovation Program of Hunan Province(No.2022RC1202)Hunan Provincial Natural Science Foundation(No.2021JJ20006).
文摘Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The detector underwent muon position-resolution tests at the Institute of Modern Physics in Lanzhou using a multiwire drift chamber(MWDC)experimental platform.In the simulation,the same structural and performance parameters were maintained to ensure the reliability of the simulation results.The Gaussian process regression(GPR)algorithm was used as the position-reconstruction algorithm owing to its optimal performance.The results of the Time Difference of Arrival algorithm were incorporated as one of the features of the GPR model to reconstruct the muon hit positions.The accuracy of the position reconstruction was evaluated by comparing the experimental results with Geant4 simulation results.In the simulation,large-area plastic scintillator detectors achieved a position resolution better than 20 mm.In the experimental-platform tests,the position resolutions of the test detectors were 27.9 mm.We also analyzed factors affecting the position resolution,including the critical angle of the total internal reflection of the photomultiplier tubes and distribution of muons in the MWDC.Simulations were performed to image both large objects and objects with different atomic numbers.The results showed that the system could image high-and low-Z materials in the constructed model and distinguish objects with significant density differences.This study demonstrates the feasibility of the proposed system,thereby providing a new detector system for muon-imaging applications.
文摘A recent experimental finding replicated an earlier research result, both of which demonstrated conflict with a specific Standard Model prediction. The “Muon g - 2” studies have indicated that the degree of muon precession predicted by the Model is not the same as observed. The researchers offer many posteriori atheoretical hypotheses as possible explanations of their findings, but no fundamental theoretical understanding of the near discovery is among them. This article describes both an explication for the unexpected result and describes its underlying mechanism based on an existing cosmological theory, the Probabilistic Spacetime Theory. The paper also discusses the potential value of this theory.
文摘This study aimed to investigate the relationship between atmospheric conditions and cosmic ray (CR) muons using daily and monthly CR data collected by the KAAU muon detector in Jeddah, Saudi Arabia between 2007 and 2012. Specifically, the study examined the effects of atmospheric pressure, air temperature, and relative humidity on CR muons at different time scales (annual, seasonal, and monthly). The results of the analysis revealed that atmospheric pressure and air temperature had a negative impact on CR muons, while relative humidity had a positive impact. Although air temperature and relative humidity had small mean values across all time scales, their coefficients varied significantly from month to month and season to season. In addition, the study conducted multivariable correlation analyses for each day, which showed that pressure coefficients had consistently negative mean values, while the temperature and humidity coefficients had varying effects, ranging from positive to negative values. The reasons for the variations in the coefficients are not yet fully understood, but the study proposed several possible terrestrial and extraterrestrial explanations. These findings provide important insights into the complex interactions between the Earth’s atmosphere and cosmic rays, which can contribute to a better understanding of the potential impacts of cosmic rays on the Earth’s climate and environment.
文摘It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It is the purpose of this paper to calculate the charges and the size of the electron neutrino, the muon neutrino, and the tau neutrino based on data available of their rest masses using the charges and rest masses of the electron, muon, and tau leptons from the Standard Model of Particle Physics Table. We base our calculations on the premise that Energy can create both Mass and Charge. Charge by itself is not conserved in any process that produces neutrinos. Only Total Energy is conserved.