A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced...A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.展开更多
In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanica...In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID.展开更多
The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to des...The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
Quantum network coding is used to solve the congestion problem in quantum communication,which will promote the transmission efficiency of quantum information and the total throughput of quantum network.We propose a no...Quantum network coding is used to solve the congestion problem in quantum communication,which will promote the transmission efficiency of quantum information and the total throughput of quantum network.We propose a novel controlled quantum network coding without information loss.The effective transmission of quantum states on the butterfly network requires the consent form a third-party controller Charlie.Firstly,two pairs of threeparticle non-maximum entangled states are pre-shared between senders and controller.By adding auxiliary particles and local operations,the senders can predict whether a certain quantum state can be successfully transmitted within the butterfly network based on the Z-{10>,|1>}basis.Secondly,when trans-mission fails upon prediction,the quantum state will not be lost,and it will sill be held by the sender.Subsequently,the controller Charlie re-prepares another three-particle non-maximum entangled state to start a new round.When the predicted transmission is successful,the quantum state can be transmitted successfully within the butterfly network.If the receiver wants to receive the effective quantum state,the quantum measurements from Charlie are needed.Thirdly,when the transmission fails,Charlie does not need to integrate the X-{1+>,1->}basis to measure its own particles,by which quantum resources are saved.Charlie not only controls the effective transmission of quantum states,but also the usage of classical and quantum channels.Finally,the implementation of the quantum circuits,as well as a flow chart and safety analysis of our scheme,is proposed.展开更多
The control network is an important developmental orientation in the remote control system. As the control network and information network are comparatively alike in the framework and technology, we can build a contro...The control network is an important developmental orientation in the remote control system. As the control network and information network are comparatively alike in the framework and technology, we can build a control network which is similar to the common information network. In the era when the information network is becoming increasingly mature, it is a royal road to construct or rebuild a control information network in the development of the control network by relying on the achievements made in the information network or current information resources. This paper expounds the construction idea of the control information network, gives the idiographic realization method and then researches into the real-time problem encountered in the control information network, and presents a three-closed-loop control system based on virtualized reality. The feasibility of the idea is validated via experiments and simulations separately.展开更多
The information centric network(ICN)has been widely discussed in current researches.The ICN interoperation with a traditional IP network and caching methods are one of the research topics of interest.For economic reas...The information centric network(ICN)has been widely discussed in current researches.The ICN interoperation with a traditional IP network and caching methods are one of the research topics of interest.For economic reasons,the capability of applying the ICN to internet service providers(ISPs)with various traditional IP protocols already implemented,especially IGP,MPLS,VRF,and TE,does not require any change on the IP network infrastructure.The biggest concern of ISPs is related to their customers’contents delivery speed.In this paper,we consider ICN caching locations in ISP by using the concept of locator/ID separation protocol(LISP)for interoperation between a traditional IP address and name-based ICN.To be more specific,we propose a new procedure to determine caching locations in the ICN by using the cuckoo search algorithm(CSA)for finding the best caching locations of information chunks.Moreover,we create the smart control plane(SCP)scheme which is an intelligent controlling,managing,and mapping system.Its function is similar to the software defined network concept.We show how the proposed SCP system works in both synthetic small network and real-world big network.Finally,we show and evaluate the performance of our algorithm comparison with the simple search method using the shortest path first algorithm.展开更多
This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is pr...This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.展开更多
Information-centric networking(ICN) aims to improve the efficiency of content delivery and reduce the redundancy of data transmission by caching contents in network nodes. An important issue is to design caching metho...Information-centric networking(ICN) aims to improve the efficiency of content delivery and reduce the redundancy of data transmission by caching contents in network nodes. An important issue is to design caching methods with better cache hit rate and achieve allocating on-demand. Therefore, an in-network caching scheduling scheme for ICN was designed, distinguishing different kinds of contents and dynamically allocating the cache size on-demand. First discussing what was appropriated to be cached in nodes, and then a classification about the contents could be cached was proposed. Furthermore, we used AHP to weight different contents classes through analyzing users' behavior. And a distributed control process was built, to achieve differentiated caching resource allocation and management. The designed scheme not only avoids the waste of caching resource, but also further enhances the cache availability. Finally, the simulation results are illustrated to show that our method has the superior performance in the aspects of server hit rate and convergence.展开更多
Information diffusion in complex networks has become quite an active research topic.As an important part of this field,intervention against information diffusion processes is attracting ever-increasing attention from ...Information diffusion in complex networks has become quite an active research topic.As an important part of this field,intervention against information diffusion processes is attracting ever-increasing attention from network and control engineers.In particular,it is urgent to design intervention schemes for the coevolutionary dynamics between information diffusion processes and coupled networks.For this purpose,we comprehensively study the problem of information diffusion intervention over static and temporal coupling networks.First,individual interactions are described by a modified activitydriven network(ADN)model.Then,we establish a novel node-based susceptible-infected-recovered-susceptible(SIRS)model to characterize the information diffusion dynamics.On these bases,three synergetic intervention strategies are formulated.Second,we derive the critical threshold of the controlled-SIRS system via stability analysis.Accordingly,we exploit a spectral optimization scheme to minimize the outbreak risk or the required budget.Third,we develop an optimal control scheme of dynamically allocating resources to minimize both system loss and intervention expense,in which the optimal intervention inputs are obtained through optimal control theory and a forward-backward sweep algorithm.Finally,extensive simulation results validate the accuracy of theoretical derivation and the performance of our proposed intervention schemes.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
SIN(Space Information Network)has recently emerged as a promising approach to solving the collaboration difficulty among current space programs.However,because of the SIN’s large scale,high component complexity,and d...SIN(Space Information Network)has recently emerged as a promising approach to solving the collaboration difficulty among current space programs.However,because of the SIN’s large scale,high component complexity,and dynamic characteristics,designing a proper SIN architecture is challenging.Firstly,we propose a novel SIN architecture,which is composed of GEO(Geostationary Earth Orbit)satellites as backbone network nodes,LEO(Low Earth Orbit)or other types of satellites as enhanced coverage nodes,and high-altitude platforms to meet the service requirements of emergency or hot-spot applications.Unlike most existing studies,the proposed architecture is AS(Autonomous-System)based.We decouple the complex SIN into simpler sub-networks using a hierarchical AS model.Then,we propose a topology control algorithm to minimize the time delay among sub-AS networks.We prove that the proposed algorithm achieves logical k-connectivity provided that the original physical topology has k-connectivity.Simulation results validate the theoretic analysis and effectiveness of the algorithm.展开更多
As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.D...As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.Due to the challenge of implicit interaction mechanism among traffic flow,airspace capacity and weather impact,the Weather-aware ATFP(Wa-ATFP)is still a nontrivial issue.In this paper,a novel Multi-faceted Spatio-Temporal Graph Convolutional Network(MSTGCN)is proposed to address the Wa-ATFP within the complex operations of MAS.Firstly,a spatio-temporal graph is constructed with three different nodes,including airport,route,and fix to describe the topology structure of MAS.Secondly,a weather-aware multi-faceted fusion module is proposed to integrate the feature of air traffic flow and the auxiliary features of capacity and weather,which can effectively address the complex impact of severe weather,e.g.,thunderstorms.Thirdly,to capture the latent connections of nodes,an adaptive graph connection constructor is designed.The experimental results with the real-world operational dataset in Guangdong-Hong Kong-Macao Greater Bay Area,China,validate that the proposed approach outperforms the state-of-the-art machine-learning and deep-learning based baseline approaches in performance.展开更多
The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approac...The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approach,Bayesian networks(BNs) provide a framework in which a decision is made by combining the experts' knowledge and the specific data.In addition,an expert system represented by human cognitive framework is adopted to express the real-time decision-making process of the decision maker.The combination of the Bayesian decision support and human cognitive framework in the C2 of a specific application field is modeled and executed by colored Petri nets(CPNs),and the consequences of execution manifest such combination can perfectly present the decision-making process in C2.展开更多
Space information network is used for real time acquiring, transmitting and processing the space information on the space platform, which provides significant communication services for communication, navigation posit...Space information network is used for real time acquiring, transmitting and processing the space information on the space platform, which provides significant communication services for communication, navigation positioning and science exploration. In this paper, the architecture of Software Defined Space Optical Network (SDSON) based on cloud platform is designed by means of Software Defined Optical Network (SDON) and cloud services. The new architecture combining centralized and distributed management-control mechanism is a multi-layer and multi-domain architecture with powerful computing and storage ability. Moreover, reliable service and unreliable service communication models employed in the space information network are proposed considering the characteristic of Disruption/Delay Tolerant Network (DTN). Finally, the functional verification and demonstration are performed on our optical experimental network platform.展开更多
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
With the expansion of network services,large-scale networks have progressively become common.The network status changes rapidly in response to customer needs and configuration changes,so network configuration changes ...With the expansion of network services,large-scale networks have progressively become common.The network status changes rapidly in response to customer needs and configuration changes,so network configuration changes are also very frequent.However,no matter what changes,the network must ensure the correct conditions,such as isolating tenants from each other or guaranteeing essential services.Once changes occur,it is necessary to verify the after-changed network.Whereas,for the verification of large-scale network configuration changes,many current verifiers show poor efficiency.In order to solve the problem ofmultiple global verifications caused by frequent updates of local configurations in large networks,we present a fast configuration updates verification tool,FastCUV,for distributed control planes.FastCUV aims to enhance the efficiency of distributed control plane verification for medium and large networks while ensuring correctness.This paper presents a method to determine the network range affected by the configuration change.We present a flow model and graph structure to facilitate the design of verification algorithms and speed up verification.Our scheme verifies the network area affected by obtaining the change of the Forwarding Information Base(FIB)before and after.FastCUV supports rich network attributes,meanwhile,has high efficiency and correctness performance.After experimental verification and result analysis,our method outperforms the state-of-the-art method to a certain extent.展开更多
基金Hohai University Startup Outlay for Doctor Scientific Research (2084/40601136)
文摘A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.
文摘In the BOPP (Biaxially Oriented Polypropylene) production line, the tension size and smooth film received change volume has a decisive effect on the rolling quality, casting machine is a complicated electromechanical control system, tension control of casting machine are the main factors that influence the production quality. Analyzed the reason and the tension control mathematical model generation casting machine tension in the BOPP production line, for the constant tension control of casting machine, put forward a kind of improved PID control method based on RBF neural network. By the method of Jacobian information identification of RBF neural network, combined with the incremental PID algorithm to realize the self-tuning tension control parameters, control simulation and implementation of the model using Matlab software programming. The simulation results show that, the improved algorithm has better control effect than the general PID.
基金This work was supported by the National Natural Science Foundation of China (No.60274014)Specialized+1 种基金Research Fund for the Doctoral Program of Higher Education (No. 20020487006)China Education Ministry' s Key Laboratory Foundation for Intelligent Ma
文摘The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.
基金supported by National Natural Science Foundation of China(61233004,61221003,61374109,61104091,61304078,61473184)National Basic Research Program of China(973 Program)(2013CB035500)+2 种基金the International Cooperation Program of Shanghai Science and Technology Commission(12230709600)the Higher Education Research Fund for the Doctoral Program of China(20120073130006,20110073110018)the China Postdoctoral Science Foundation(2013M540364)
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
基金This work is supported by NSFC(Grant Nos.92046001,61571024,61671087,61962009,61971021)the Aeronautical Science Foundation of China(2018ZC51016)+4 种基金the Fundamental Research Funds for the Central Universities(Grant No.2019XD-A02)the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant Nos.2018BDKFJJ018,2019BDKFJJ010,2019BDKFJJ014)the Open Research Project of the State Key Laboratory of Media Convergence and Communication,Communication University of China,China(Grant No.SKLMCC2020KF006)Huawei Technologies Co.Ltd(Grant No.YBN2020085019)the Scientific Research Foundation of North China University of Technology.
文摘Quantum network coding is used to solve the congestion problem in quantum communication,which will promote the transmission efficiency of quantum information and the total throughput of quantum network.We propose a novel controlled quantum network coding without information loss.The effective transmission of quantum states on the butterfly network requires the consent form a third-party controller Charlie.Firstly,two pairs of threeparticle non-maximum entangled states are pre-shared between senders and controller.By adding auxiliary particles and local operations,the senders can predict whether a certain quantum state can be successfully transmitted within the butterfly network based on the Z-{10>,|1>}basis.Secondly,when trans-mission fails upon prediction,the quantum state will not be lost,and it will sill be held by the sender.Subsequently,the controller Charlie re-prepares another three-particle non-maximum entangled state to start a new round.When the predicted transmission is successful,the quantum state can be transmitted successfully within the butterfly network.If the receiver wants to receive the effective quantum state,the quantum measurements from Charlie are needed.Thirdly,when the transmission fails,Charlie does not need to integrate the X-{1+>,1->}basis to measure its own particles,by which quantum resources are saved.Charlie not only controls the effective transmission of quantum states,but also the usage of classical and quantum channels.Finally,the implementation of the quantum circuits,as well as a flow chart and safety analysis of our scheme,is proposed.
文摘The control network is an important developmental orientation in the remote control system. As the control network and information network are comparatively alike in the framework and technology, we can build a control network which is similar to the common information network. In the era when the information network is becoming increasingly mature, it is a royal road to construct or rebuild a control information network in the development of the control network by relying on the achievements made in the information network or current information resources. This paper expounds the construction idea of the control information network, gives the idiographic realization method and then researches into the real-time problem encountered in the control information network, and presents a three-closed-loop control system based on virtualized reality. The feasibility of the idea is validated via experiments and simulations separately.
文摘The information centric network(ICN)has been widely discussed in current researches.The ICN interoperation with a traditional IP network and caching methods are one of the research topics of interest.For economic reasons,the capability of applying the ICN to internet service providers(ISPs)with various traditional IP protocols already implemented,especially IGP,MPLS,VRF,and TE,does not require any change on the IP network infrastructure.The biggest concern of ISPs is related to their customers’contents delivery speed.In this paper,we consider ICN caching locations in ISP by using the concept of locator/ID separation protocol(LISP)for interoperation between a traditional IP address and name-based ICN.To be more specific,we propose a new procedure to determine caching locations in the ICN by using the cuckoo search algorithm(CSA)for finding the best caching locations of information chunks.Moreover,we create the smart control plane(SCP)scheme which is an intelligent controlling,managing,and mapping system.Its function is similar to the software defined network concept.We show how the proposed SCP system works in both synthetic small network and real-world big network.Finally,we show and evaluate the performance of our algorithm comparison with the simple search method using the shortest path first algorithm.
基金This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award under Grant DE200101128.
文摘This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
基金supported in part by The National High Technology Research and Development Program of China (863 Program) under Grant No. 2015AA016101The National Natural Science Foundation of China under Grant No. 61501042+1 种基金Beijing Nova Program under Grant No. Z151100000315078BUPT Special Program for Youth Scientific Research Innovation under Grant No. 2015RC10
文摘Information-centric networking(ICN) aims to improve the efficiency of content delivery and reduce the redundancy of data transmission by caching contents in network nodes. An important issue is to design caching methods with better cache hit rate and achieve allocating on-demand. Therefore, an in-network caching scheduling scheme for ICN was designed, distinguishing different kinds of contents and dynamically allocating the cache size on-demand. First discussing what was appropriated to be cached in nodes, and then a classification about the contents could be cached was proposed. Furthermore, we used AHP to weight different contents classes through analyzing users' behavior. And a distributed control process was built, to achieve differentiated caching resource allocation and management. The designed scheme not only avoids the waste of caching resource, but also further enhances the cache availability. Finally, the simulation results are illustrated to show that our method has the superior performance in the aspects of server hit rate and convergence.
基金the National Natural Science Foundation of China(Grant No.62071248)。
文摘Information diffusion in complex networks has become quite an active research topic.As an important part of this field,intervention against information diffusion processes is attracting ever-increasing attention from network and control engineers.In particular,it is urgent to design intervention schemes for the coevolutionary dynamics between information diffusion processes and coupled networks.For this purpose,we comprehensively study the problem of information diffusion intervention over static and temporal coupling networks.First,individual interactions are described by a modified activitydriven network(ADN)model.Then,we establish a novel node-based susceptible-infected-recovered-susceptible(SIRS)model to characterize the information diffusion dynamics.On these bases,three synergetic intervention strategies are formulated.Second,we derive the critical threshold of the controlled-SIRS system via stability analysis.Accordingly,we exploit a spectral optimization scheme to minimize the outbreak risk or the required budget.Third,we develop an optimal control scheme of dynamically allocating resources to minimize both system loss and intervention expense,in which the optimal intervention inputs are obtained through optimal control theory and a forward-backward sweep algorithm.Finally,extensive simulation results validate the accuracy of theoretical derivation and the performance of our proposed intervention schemes.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
基金supported by the National Natural Science Foundation of China(Nos.91338201,91438109,61401507).
文摘SIN(Space Information Network)has recently emerged as a promising approach to solving the collaboration difficulty among current space programs.However,because of the SIN’s large scale,high component complexity,and dynamic characteristics,designing a proper SIN architecture is challenging.Firstly,we propose a novel SIN architecture,which is composed of GEO(Geostationary Earth Orbit)satellites as backbone network nodes,LEO(Low Earth Orbit)or other types of satellites as enhanced coverage nodes,and high-altitude platforms to meet the service requirements of emergency or hot-spot applications.Unlike most existing studies,the proposed architecture is AS(Autonomous-System)based.We decouple the complex SIN into simpler sub-networks using a hierarchical AS model.Then,we propose a topology control algorithm to minimize the time delay among sub-AS networks.We prove that the proposed algorithm achieves logical k-connectivity provided that the original physical topology has k-connectivity.Simulation results validate the theoretic analysis and effectiveness of the algorithm.
基金supported by the National Key Research and Development Program of China(No.2022YFB2602402)the National Natural Science Foundation of China(Nos.U2033215 and U2133210).
文摘As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.Due to the challenge of implicit interaction mechanism among traffic flow,airspace capacity and weather impact,the Weather-aware ATFP(Wa-ATFP)is still a nontrivial issue.In this paper,a novel Multi-faceted Spatio-Temporal Graph Convolutional Network(MSTGCN)is proposed to address the Wa-ATFP within the complex operations of MAS.Firstly,a spatio-temporal graph is constructed with three different nodes,including airport,route,and fix to describe the topology structure of MAS.Secondly,a weather-aware multi-faceted fusion module is proposed to integrate the feature of air traffic flow and the auxiliary features of capacity and weather,which can effectively address the complex impact of severe weather,e.g.,thunderstorms.Thirdly,to capture the latent connections of nodes,an adaptive graph connection constructor is designed.The experimental results with the real-world operational dataset in Guangdong-Hong Kong-Macao Greater Bay Area,China,validate that the proposed approach outperforms the state-of-the-art machine-learning and deep-learning based baseline approaches in performance.
基金supported by the National Natural Science Foundation of China (60874068)
文摘The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approach,Bayesian networks(BNs) provide a framework in which a decision is made by combining the experts' knowledge and the specific data.In addition,an expert system represented by human cognitive framework is adopted to express the real-time decision-making process of the decision maker.The combination of the Bayesian decision support and human cognitive framework in the C2 of a specific application field is modeled and executed by colored Petri nets(CPNs),and the consequences of execution manifest such combination can perfectly present the decision-making process in C2.
文摘Space information network is used for real time acquiring, transmitting and processing the space information on the space platform, which provides significant communication services for communication, navigation positioning and science exploration. In this paper, the architecture of Software Defined Space Optical Network (SDSON) based on cloud platform is designed by means of Software Defined Optical Network (SDON) and cloud services. The new architecture combining centralized and distributed management-control mechanism is a multi-layer and multi-domain architecture with powerful computing and storage ability. Moreover, reliable service and unreliable service communication models employed in the space information network are proposed considering the characteristic of Disruption/Delay Tolerant Network (DTN). Finally, the functional verification and demonstration are performed on our optical experimental network platform.
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
基金supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金theHainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘With the expansion of network services,large-scale networks have progressively become common.The network status changes rapidly in response to customer needs and configuration changes,so network configuration changes are also very frequent.However,no matter what changes,the network must ensure the correct conditions,such as isolating tenants from each other or guaranteeing essential services.Once changes occur,it is necessary to verify the after-changed network.Whereas,for the verification of large-scale network configuration changes,many current verifiers show poor efficiency.In order to solve the problem ofmultiple global verifications caused by frequent updates of local configurations in large networks,we present a fast configuration updates verification tool,FastCUV,for distributed control planes.FastCUV aims to enhance the efficiency of distributed control plane verification for medium and large networks while ensuring correctness.This paper presents a method to determine the network range affected by the configuration change.We present a flow model and graph structure to facilitate the design of verification algorithms and speed up verification.Our scheme verifies the network area affected by obtaining the change of the Forwarding Information Base(FIB)before and after.FastCUV supports rich network attributes,meanwhile,has high efficiency and correctness performance.After experimental verification and result analysis,our method outperforms the state-of-the-art method to a certain extent.