Effects of strain rate on the microstructure evolution and thermal stability of1050commercial pure aluminum processed by means of split Hopkinson pressure bar(SHPB)and Instron?3369mechanical testing machine were inves...Effects of strain rate on the microstructure evolution and thermal stability of1050commercial pure aluminum processed by means of split Hopkinson pressure bar(SHPB)and Instron?3369mechanical testing machine were investigated.Samples in the deformed state and after various annealing treatments at423?523K(150?250°C)for1h were characterized by TEM and hardness test.The result reveals that the samples in the deformed state were mainly composed of elongated subgrains/cells with high density of dislocations.Microstructures of the quasi-static compressed aluminum were quite stable throughout the temperature range studied,and no significant grain growth was observed.However,for the dynamic impacted one,recrystallized grains with an average grain size of4.7μm were evolved after annealing at523K(250°C)for1h.It is suggested that the annealing behavior of this dynamic deformed aluminum is a continuous process of grain coarsening,rather than the traditional discontinuous recrystallization for the quasi-static compressed aluminum.展开更多
The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress p...The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
基金Projects(51274245,51574290,U1330126) supported by the National Natural Science Foundation of ChinaProject supported by the Opening Fund of State Key Laboratory of Nonlinear Mechanics,China
文摘Effects of strain rate on the microstructure evolution and thermal stability of1050commercial pure aluminum processed by means of split Hopkinson pressure bar(SHPB)and Instron?3369mechanical testing machine were investigated.Samples in the deformed state and after various annealing treatments at423?523K(150?250°C)for1h were characterized by TEM and hardness test.The result reveals that the samples in the deformed state were mainly composed of elongated subgrains/cells with high density of dislocations.Microstructures of the quasi-static compressed aluminum were quite stable throughout the temperature range studied,and no significant grain growth was observed.However,for the dynamic impacted one,recrystallized grains with an average grain size of4.7μm were evolved after annealing at523K(250°C)for1h.It is suggested that the annealing behavior of this dynamic deformed aluminum is a continuous process of grain coarsening,rather than the traditional discontinuous recrystallization for the quasi-static compressed aluminum.
基金financially supported by the State Grid Corporation of China (No. 52110416001z)the National Natural Science Foundation of China (No. 51331007)
文摘The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.