Given the crucial role of land surface processes in global and regional climates, there is a pressing need to test and verify the performance of land surface models via comparisons to observations. In this study, the ...Given the crucial role of land surface processes in global and regional climates, there is a pressing need to test and verify the performance of land surface models via comparisons to observations. In this study, the eddy covariance measurements from 20 FLUXNET sites spanning more than 100 site-years were utilized to evaluate the performance of the Common Land Model (CoLM) over different vegetation types in various climate zones. A decomposition method was employed to separate both the observed and simulated energy fluxes, i.e., the sensible heat flux, latent heat flux, net radiation, and ground heat flux, at three timescales ranging from stepwise (30 rain) to monthly. A comparison between the simulations and observations indicated that CoLM produced satisfactory simulations of all four energy fluxes, although the different indexes did not exhibit consistent results among the different fluxes, A strong agreement between the simulations and observations was found for the seasonal cycles at the 20 sites, whereas CoLM underestimated the latent heat flux at the sites with distinct dry and wet seasons, which might be associated with its weakness in simulating soil water during the dry season. CoLM cannot explicitly simulate the midday depression of leaf gas exchange, which may explain why CoLM also has a maximum diurnal bias at noon in the summer. Of the eight selected vegetation types analyzed, CoLM performs best for evergreen broadleaf forests and worst for croplands and wetlands.展开更多
Towards a better understanding of hydrological interactions between the land surface and atmosphere, land surface mod- els are routinely used to simulate hydro-meteorological fluxes. However, there is a lack of observ...Towards a better understanding of hydrological interactions between the land surface and atmosphere, land surface mod- els are routinely used to simulate hydro-meteorological fluxes. However, there is a lack of observations available for model forcing, to estimate the hydro-meteorological fluxes in East Asia. In this study, Common Land Model (CLM) was used in offline-mode during the summer monsoon period of 2006 in East Asia, with different forcings from Asiaflux, Korea Land Data Assimilation System (KLDAS), and Global Land Data Assimilation System (GLDAS), at point and regional scales, separately. The CLM results were compared with observations from Asiaflux sites. The estimated net radiation showed good agreement, with r = 0.99 for the point scale and 0.85 for the regional scale. The estimated sensible and latent heat fluxes using Asiaflux and KLDAS data indicated reasonable agreement, with r = 0.70. The estimated soil moisture and soil temperature showed similar patterns to observations, although the estimated water fluxes using KLDAS showed larger discrepancies than those of Asiaflux because of scale mismatch. The spatial distribution of hydro-meteorological fluxes according to KLDAS for East Asia were compared to the CLM results with GLDAS, and the GLDAS provided online. The spatial distributions of CLM with KLDAS were analogous to CLM with GLDAS, and the standalone GLDAS data. The results indicate that KLDAS is a good potential source of high spatial resolution forcing data. Therefore, the KLDAS is a promising alternative product, capable of compensating for the lack of observations and low resolution grid data for East Asia.展开更多
陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地...陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地区的模拟性能进行了检验与对比。通过比较观测值与模拟值,验证了模式在高原季节性冻土地区的适用性,发现CLM4.0较CLM3.0在模拟结果上有了一定提高。CLM4.0加入了未冻水参数化方案,使模式可以模拟到冬季土壤冻结后存留的未冻水,显著增加了冻融期间土壤含水量的模拟,同时减小了土壤含冰量的模拟值。并因此增大了模拟的冻土热容量,减小了热导率,使冻融期间土壤温度的模拟也有了一定改善。但是模拟中也发现对于较深层土壤,温度模拟值在冻融期间较观测显著偏低。另外,在消融(冻结)过程阶段CLM4.0模拟的土壤含水量骤增(骤降)的时间均较观测提前。消融过程、冻结过程阶段模拟时间偏短,而完全冻结、完全消融阶段模拟时间偏长。因此CLM对于高原冻土地区的模拟仍是其需要重点改进的地方之一。展开更多
Improving and validating land surface models based on integrated observations in deserts is one of the challenges in land modeling. Particularly, key parameters and parameterization schemes in desert regions need to b...Improving and validating land surface models based on integrated observations in deserts is one of the challenges in land modeling. Particularly, key parameters and parameterization schemes in desert regions need to be evaluated in-situ to improve the models. In this study, we calibrated the land-surface key parameters and evaluated several formulations or schemes for thermal roughness length (z 0h ) in the common land model (CoLM). Our parameter calibration and scheme evaluation were based on the observed data during a torrid summer (29 July to 11 September 2009) over the Taklimakan Desert hinterland. First, the importance of the key parameters in the experiment was evaluated based on their physics principles and the significance of these key parameters were further validated using sensitivity test. Second, difference schemes (or physics-based formulas) of z 0h were adopted to simulate the variations of energy-related variables (e.g., sensible heat flux and surface skin temperature) and the simulated variations were then compared with the observed data. Third, the z 0h scheme that performed best (i.e., Y07) was then selected to replace the defaulted one (i.e., Z98); the revised scheme and the superiority of Y07 over Z98 was further demonstrated by comparing the simulated results with the observed data. Admittedly, the revised model did a relatively poor job of simulating the diurnal variations of surface soil heat flux, and nighttime soil temperature was also underestimated, calling for further improvement of the model for desert regions.展开更多
Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Mod...Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.展开更多
The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simu...The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64.展开更多
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud...Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.展开更多
The ECHAM5 model is coupled with the widely used Common Land Model(CoLM). ECHAM5 is a state-of-theart atmospheric general circulation model incorporated into the integrated weather and climate model of the Chinese Aca...The ECHAM5 model is coupled with the widely used Common Land Model(CoLM). ECHAM5 is a state-of-theart atmospheric general circulation model incorporated into the integrated weather and climate model of the Chinese Academy of Meteorological Sciences(CAMS-CSM). Land surface schemes in ECHAM5 are simple and do not provide an adequate representation of the vegetation canopy and snow/frozen soil processes. Two AMIP(Atmospheric Model Intercomparison Project)-type experiments using ECHAM5 and ECHAM5-CoLM are run over 30 yr and the results are compared with reanalysis and observational data. It is found that the pattern of land surface temperature simulated by ECHAM5-CoLM is significantly improved relative to ECHAM5. Specifically, the cold bias over Eurasia is removed and the root-mean-square error is reduced in most regions. The seasonal variation in the zonal mean land surface temperature and the in situ soil temperature at 20-and 80-cm depths are both better simulated by ECHAM5-CoLM. ECHAM5-CoLM produces a more reasonable spatial pattern in the soil moisture content, whereas ECHAM5 predicts much drier soils. The seasonal cycle of soil moisture content from ECHAM5-CoLM is a better match to the observational data in six specific regions. ECHAM5-CoLM reproduces the observed spatial patterns of both sensible and latent heat fluxes. The strong positive bias in precipitation over land is reduced in ECHAM5-CoLM, especially over the southern Tibetan Plateau and middle–lower reaches of the Yangtze River during the summer monsoon rainy season.展开更多
利用第二次全国土壤调查土壤质地数据(SNSS)和中国区域陆地覆盖资料(CLCV)将陆面过程模式CLM3.5(Community Land Model version 3.5)中基于联合国粮食农业组织发展的土壤质地数据(FAO)和MODIS卫星反演的陆地覆盖数据(MODIS)...利用第二次全国土壤调查土壤质地数据(SNSS)和中国区域陆地覆盖资料(CLCV)将陆面过程模式CLM3.5(Community Land Model version 3.5)中基于联合国粮食农业组织发展的土壤质地数据(FAO)和MODIS卫星反演的陆地覆盖数据(MODIS)进行了替换,使用中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气强迫场资料,分别驱动基于同时改进土壤质地和陆地覆盖数据的CLM3.5(CLM-new)、基于只改进陆地覆盖数据的CLM3.5(CLM-clcv)、基于只改进土壤质地数据的CLM3.5(CLM-snss)和基于原始下垫面数据的CLM3.5(CLM-ctl),对内蒙古地区2011~2013年土壤湿度的时空变化进行模拟试验,研究下垫面改进对CLM3.5模拟土壤湿度的影响。将四组模拟结果与46个土壤水分站点观测数据进行对比分析,结果表明:相对于控制试验,CLM-clcv、CLM-snss和CLM-new都能不同程度地改进土壤湿度模拟,其中CLM-clcv主要在呼伦贝尔改进明显,CLM-snss则在除呼伦贝尔以外的大部地区改进显著,CLM-ctl模拟的土壤湿度在各层上均系统性偏大,而CLM-new模拟土壤湿度最好地反映出内蒙古地区观测的土壤湿度的时空变化特征,显著改善了土壤湿度的模拟,体现在与观测值有着更高的相关系数和更小的平均偏差与均方根误差。展开更多
利用公共陆面模式Common Land Model(CoLM)及"全球协调加强观测计划之亚澳季风青藏高原试验"(CAMP/Tibet)中那曲地区Bujiao(BJ)站2002—2004年的观测资料对该地区进行了单点数值模拟试验。通过比较模拟与观测的地表能量通量,...利用公共陆面模式Common Land Model(CoLM)及"全球协调加强观测计划之亚澳季风青藏高原试验"(CAMP/Tibet)中那曲地区Bujiao(BJ)站2002—2004年的观测资料对该地区进行了单点数值模拟试验。通过比较模拟与观测的地表能量通量,表明CoLM较成功地模拟了该地区的能量分配。模式对向上的短波辐射、向上的长波辐射、净辐射及土壤热通量模拟得较好,但冬季存在偏差。进一步比较了模拟和观测的土壤温度及土壤湿度,发现浅层60 cm土壤温度模拟较好,深层存在偏差,表现为土壤温度变化滞后于实际变化。土壤湿度总体偏小,尤其是冬季冻结期,土壤冻融过程中忽略了土壤液态水在温度0℃以下仍能存在,含冰量模拟偏高。展开更多
利用NOAH(The Community Noah Land Surface Model)、SHAW(Simultaneous Heat and Water)和CLM(Community Land Model)3个不同的陆面过程模式及兰州大学(Semi-Arid Climate Observatory and Laboratory,SACOL)2007年的观测资料,对黄土...利用NOAH(The Community Noah Land Surface Model)、SHAW(Simultaneous Heat and Water)和CLM(Community Land Model)3个不同的陆面过程模式及兰州大学(Semi-Arid Climate Observatory and Laboratory,SACOL)2007年的观测资料,对黄土高原半干旱区的陆面过程进行了模拟研究。通过与观测值间的对比,考察不同陆面过程模式在半干旱区的适用性。研究结果表明:3个模式在半干旱区的模拟性能有较大差异。其中,CLM模式模拟的20 cm以上的浅层土壤温度最优,SHAW模式模拟的深层土壤温度最优;SHAW模式模拟的土壤含水量与观测值最为接近,而NOAH和CLM模式模拟值有较大偏差;3个模式均能较好地模拟地表反射辐射,其中SHAW模式模拟值与观测值的偏差最小;对地表长波辐射的模拟,CLM模式的模拟最优;3个模式均能较好地反映感热、潜热通量的变化趋势,其中CLM模式对感热的模拟性能优于其他两个模式,在有降水发生后的湿润条件下,CLM模式对潜热的模拟性能最优,而无降水的干燥条件下,CLM模式的模拟偏差最大,NOAH模式对冬季潜热的模拟最优。总体而言,CLM模式能够更好地再现半干旱区地气之间的相互作用,但模式对土壤含水量及干燥条件下的潜热通量的模拟较差,模式对半干旱区陆气间的水文过程还有待进一步的研究和改进。展开更多
利用陆面过程模式Common Land Model(CoLM),选取青藏高原上3个不同下垫面观测站(藏东南站、纳木错站和珠峰站)的观测资料,对这3个野外观测站进行了单点数值模拟试验。根据3个测站的试验数据,对模式中土壤孔隙度和饱和导水率进行了优化,...利用陆面过程模式Common Land Model(CoLM),选取青藏高原上3个不同下垫面观测站(藏东南站、纳木错站和珠峰站)的观测资料,对这3个野外观测站进行了单点数值模拟试验。根据3个测站的试验数据,对模式中土壤孔隙度和饱和导水率进行了优化,针对青藏高原地区土壤层薄的特点,对模式中土壤分层方案进行了调整。结果表明,调整分层方案后的CoLM模式对3个测站土壤湿度的模拟性能较原分层方案有明显提高,平均偏差均减小0.014以上。但是与观测值相比,藏东南站土壤湿度的模拟整体偏低,纳木错站和珠峰站则整体偏高。对土壤温度而言,3个测站模拟与观测的相关系数都达到了0.9以上,珠峰站偏差较大,调整分层方案后模拟的偏差有一定的改进。模式较好地模拟了3个测站的净辐射、感热通量和潜热通量的日变化和季节变化情况,调整分层方案后潜热通量的改进最为明显。展开更多
利用CLM(Common Land Model)模式对我国内蒙古奈曼旗农牧交错带沙漠和农田两种不同典型下垫面的陆面过程进行了数值模拟试验,并与外场试验观测结果进行了对比分析。结果表明:无论是沙漠还是农田试验,CLM都能够较好地模拟其辐射通量和土...利用CLM(Common Land Model)模式对我国内蒙古奈曼旗农牧交错带沙漠和农田两种不同典型下垫面的陆面过程进行了数值模拟试验,并与外场试验观测结果进行了对比分析。结果表明:无论是沙漠还是农田试验,CLM都能够较好地模拟其辐射通量和土壤中的热传导特征,CLM的模拟结果能够真实地再现试验期间土壤热传导过程对天气过程的响应。相比而言,模式对沙漠地区长波辐射通量和干燥时期短波辐射通量的模拟结果好于农田,其原因可能是因为农田下垫面植被及土壤特征较沙漠复杂,有着很大的不确定性,造成了农田地表反照率和温度模拟的偏差。而对农田热传导的模拟结果好于沙漠,反映了CLM对含水量较大、持水力较强的农田下垫面的热传导模拟能力较好,而对含水量较小、持水力较弱的沙漠下垫面的热传导模拟能力相对较差。展开更多
本文基于中国1:100万植被图、马里兰大学AVHRR森林覆盖资料和中国753个气象站点40年的降水气温资料,发展了一套用于气候模拟的中国陆面覆盖资料(Chinese land cover derived fromvegetation map,简称CLCV)。该套资料与CLM(Community Lan...本文基于中国1:100万植被图、马里兰大学AVHRR森林覆盖资料和中国753个气象站点40年的降水气温资料,发展了一套用于气候模拟的中国陆面覆盖资料(Chinese land cover derived fromvegetation map,简称CLCV)。该套资料与CLM(Community Land Model)原来所用的MODIS(Moderate Resolution I maging Spectro-radiometer)陆面覆盖资料相比有较大不同:其中裸土比例减少了14.5%,森林、灌木、草原和农作物比例分别增加了3.3%、4.8%、4.4%和0.3%,冰川、湖泊和湿地比例分别增加了0.4%、0.8%和0.6%。将CLCV和MO-DIS资料分别与全国土地资源概查汇总结果分省统计资料和基于中国1km土地利用图的土地利用资料比较表明,CLCV与两者较为接近。最后,利用CLM模式分别采用CLCV与MODIS陆面覆盖资料在中国区域内进行数值模拟,结果显示,使用CLCV资料所模拟的蒸散增加了约7.7mm/a;地表反照率、感热和径流分别减小了约0.7%、0.3W/m2和7.6mm/a;与MODIS卫星反演地表反照率和GRDC(Global Runoff Data Centre)径流资料比较表明,利用CLCV资料所模拟的地表反照率有一定改进,并能基本模拟出径流分布趋势。展开更多
基金supported by the R&D Special Fund for Nonprofit Industry (Meteorology) (Grant Nos. GYHY200706025, GYHY201206013 and GYHY201306066)
文摘Given the crucial role of land surface processes in global and regional climates, there is a pressing need to test and verify the performance of land surface models via comparisons to observations. In this study, the eddy covariance measurements from 20 FLUXNET sites spanning more than 100 site-years were utilized to evaluate the performance of the Common Land Model (CoLM) over different vegetation types in various climate zones. A decomposition method was employed to separate both the observed and simulated energy fluxes, i.e., the sensible heat flux, latent heat flux, net radiation, and ground heat flux, at three timescales ranging from stepwise (30 rain) to monthly. A comparison between the simulations and observations indicated that CoLM produced satisfactory simulations of all four energy fluxes, although the different indexes did not exhibit consistent results among the different fluxes, A strong agreement between the simulations and observations was found for the seasonal cycles at the 20 sites, whereas CoLM underestimated the latent heat flux at the sites with distinct dry and wet seasons, which might be associated with its weakness in simulating soil water during the dry season. CoLM cannot explicitly simulate the midday depression of leaf gas exchange, which may explain why CoLM also has a maximum diurnal bias at noon in the summer. Of the eight selected vegetation types analyzed, CoLM performs best for evergreen broadleaf forests and worst for croplands and wetlands.
基金supported by Space Core Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICTFuture Planning(NRF-2014M1A3A3A02034789)+1 种基金Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2013R1A1A2A10004743)the Korea Meteorological Administration Research and Development Program under Grant Weather Information Service Engine(WISE)project,KMA-2012-0001-A
文摘Towards a better understanding of hydrological interactions between the land surface and atmosphere, land surface mod- els are routinely used to simulate hydro-meteorological fluxes. However, there is a lack of observations available for model forcing, to estimate the hydro-meteorological fluxes in East Asia. In this study, Common Land Model (CLM) was used in offline-mode during the summer monsoon period of 2006 in East Asia, with different forcings from Asiaflux, Korea Land Data Assimilation System (KLDAS), and Global Land Data Assimilation System (GLDAS), at point and regional scales, separately. The CLM results were compared with observations from Asiaflux sites. The estimated net radiation showed good agreement, with r = 0.99 for the point scale and 0.85 for the regional scale. The estimated sensible and latent heat fluxes using Asiaflux and KLDAS data indicated reasonable agreement, with r = 0.70. The estimated soil moisture and soil temperature showed similar patterns to observations, although the estimated water fluxes using KLDAS showed larger discrepancies than those of Asiaflux because of scale mismatch. The spatial distribution of hydro-meteorological fluxes according to KLDAS for East Asia were compared to the CLM results with GLDAS, and the GLDAS provided online. The spatial distributions of CLM with KLDAS were analogous to CLM with GLDAS, and the standalone GLDAS data. The results indicate that KLDAS is a good potential source of high spatial resolution forcing data. Therefore, the KLDAS is a promising alternative product, capable of compensating for the lack of observations and low resolution grid data for East Asia.
文摘陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地区的模拟性能进行了检验与对比。通过比较观测值与模拟值,验证了模式在高原季节性冻土地区的适用性,发现CLM4.0较CLM3.0在模拟结果上有了一定提高。CLM4.0加入了未冻水参数化方案,使模式可以模拟到冬季土壤冻结后存留的未冻水,显著增加了冻融期间土壤含水量的模拟,同时减小了土壤含冰量的模拟值。并因此增大了模拟的冻土热容量,减小了热导率,使冻融期间土壤温度的模拟也有了一定改善。但是模拟中也发现对于较深层土壤,温度模拟值在冻融期间较观测显著偏低。另外,在消融(冻结)过程阶段CLM4.0模拟的土壤含水量骤增(骤降)的时间均较观测提前。消融过程、冻结过程阶段模拟时间偏短,而完全冻结、完全消融阶段模拟时间偏长。因此CLM对于高原冻土地区的模拟仍是其需要重点改进的地方之一。
基金jointly funded by the National Natural Science Foundation of China(GrantNo40775019)Desert Meteorology Science Foundation of China(Grant NoSqj2009012)Project of Key Laboratory of Oasis Ecology(Xinjiang University)Ministry of Education(Grant NoXJDX0206-2009-08)
文摘Improving and validating land surface models based on integrated observations in deserts is one of the challenges in land modeling. Particularly, key parameters and parameterization schemes in desert regions need to be evaluated in-situ to improve the models. In this study, we calibrated the land-surface key parameters and evaluated several formulations or schemes for thermal roughness length (z 0h ) in the common land model (CoLM). Our parameter calibration and scheme evaluation were based on the observed data during a torrid summer (29 July to 11 September 2009) over the Taklimakan Desert hinterland. First, the importance of the key parameters in the experiment was evaluated based on their physics principles and the significance of these key parameters were further validated using sensitivity test. Second, difference schemes (or physics-based formulas) of z 0h were adopted to simulate the variations of energy-related variables (e.g., sensible heat flux and surface skin temperature) and the simulated variations were then compared with the observed data. Third, the z 0h scheme that performed best (i.e., Y07) was then selected to replace the defaulted one (i.e., Z98); the revised scheme and the superiority of Y07 over Z98 was further demonstrated by comparing the simulated results with the observed data. Admittedly, the revised model did a relatively poor job of simulating the diurnal variations of surface soil heat flux, and nighttime soil temperature was also underestimated, calling for further improvement of the model for desert regions.
基金supported by the National Basic Research Program of China(2012CB956204)We acknowledge the modeling groups for providing the data for analysis,the Program for Climate Model Diagnosis and Intercomparison(PCMDI)the World Climate Research Programme’s(WCRP’s)Coupled Model Intercomparison Project for collecting and archiving the model output and organizing the data analysis
文摘Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.
基金Project supported by the China Special Fund for Meteorological Research in the Public Interest(No.GYHY201306045)the National Natural Science Foundation of China(Nos.41305066 and41575096)
文摘The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64.
基金funded by the National Natural Science Foundation of China(42371022,42030501,41877148).
文摘Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.
基金Supported by the National Key Research and Development Program of China(2016YFB0200801,2017YFA0604300,and 2018YFC1507003)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100300)Basic Research Fund of the Chinese Academy of Meteorological Sciences(2017Y004)
文摘The ECHAM5 model is coupled with the widely used Common Land Model(CoLM). ECHAM5 is a state-of-theart atmospheric general circulation model incorporated into the integrated weather and climate model of the Chinese Academy of Meteorological Sciences(CAMS-CSM). Land surface schemes in ECHAM5 are simple and do not provide an adequate representation of the vegetation canopy and snow/frozen soil processes. Two AMIP(Atmospheric Model Intercomparison Project)-type experiments using ECHAM5 and ECHAM5-CoLM are run over 30 yr and the results are compared with reanalysis and observational data. It is found that the pattern of land surface temperature simulated by ECHAM5-CoLM is significantly improved relative to ECHAM5. Specifically, the cold bias over Eurasia is removed and the root-mean-square error is reduced in most regions. The seasonal variation in the zonal mean land surface temperature and the in situ soil temperature at 20-and 80-cm depths are both better simulated by ECHAM5-CoLM. ECHAM5-CoLM produces a more reasonable spatial pattern in the soil moisture content, whereas ECHAM5 predicts much drier soils. The seasonal cycle of soil moisture content from ECHAM5-CoLM is a better match to the observational data in six specific regions. ECHAM5-CoLM reproduces the observed spatial patterns of both sensible and latent heat fluxes. The strong positive bias in precipitation over land is reduced in ECHAM5-CoLM, especially over the southern Tibetan Plateau and middle–lower reaches of the Yangtze River during the summer monsoon rainy season.
文摘利用第二次全国土壤调查土壤质地数据(SNSS)和中国区域陆地覆盖资料(CLCV)将陆面过程模式CLM3.5(Community Land Model version 3.5)中基于联合国粮食农业组织发展的土壤质地数据(FAO)和MODIS卫星反演的陆地覆盖数据(MODIS)进行了替换,使用中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气强迫场资料,分别驱动基于同时改进土壤质地和陆地覆盖数据的CLM3.5(CLM-new)、基于只改进陆地覆盖数据的CLM3.5(CLM-clcv)、基于只改进土壤质地数据的CLM3.5(CLM-snss)和基于原始下垫面数据的CLM3.5(CLM-ctl),对内蒙古地区2011~2013年土壤湿度的时空变化进行模拟试验,研究下垫面改进对CLM3.5模拟土壤湿度的影响。将四组模拟结果与46个土壤水分站点观测数据进行对比分析,结果表明:相对于控制试验,CLM-clcv、CLM-snss和CLM-new都能不同程度地改进土壤湿度模拟,其中CLM-clcv主要在呼伦贝尔改进明显,CLM-snss则在除呼伦贝尔以外的大部地区改进显著,CLM-ctl模拟的土壤湿度在各层上均系统性偏大,而CLM-new模拟土壤湿度最好地反映出内蒙古地区观测的土壤湿度的时空变化特征,显著改善了土壤湿度的模拟,体现在与观测值有着更高的相关系数和更小的平均偏差与均方根误差。
文摘利用公共陆面模式Common Land Model(CoLM)及"全球协调加强观测计划之亚澳季风青藏高原试验"(CAMP/Tibet)中那曲地区Bujiao(BJ)站2002—2004年的观测资料对该地区进行了单点数值模拟试验。通过比较模拟与观测的地表能量通量,表明CoLM较成功地模拟了该地区的能量分配。模式对向上的短波辐射、向上的长波辐射、净辐射及土壤热通量模拟得较好,但冬季存在偏差。进一步比较了模拟和观测的土壤温度及土壤湿度,发现浅层60 cm土壤温度模拟较好,深层存在偏差,表现为土壤温度变化滞后于实际变化。土壤湿度总体偏小,尤其是冬季冻结期,土壤冻融过程中忽略了土壤液态水在温度0℃以下仍能存在,含冰量模拟偏高。
文摘利用NOAH(The Community Noah Land Surface Model)、SHAW(Simultaneous Heat and Water)和CLM(Community Land Model)3个不同的陆面过程模式及兰州大学(Semi-Arid Climate Observatory and Laboratory,SACOL)2007年的观测资料,对黄土高原半干旱区的陆面过程进行了模拟研究。通过与观测值间的对比,考察不同陆面过程模式在半干旱区的适用性。研究结果表明:3个模式在半干旱区的模拟性能有较大差异。其中,CLM模式模拟的20 cm以上的浅层土壤温度最优,SHAW模式模拟的深层土壤温度最优;SHAW模式模拟的土壤含水量与观测值最为接近,而NOAH和CLM模式模拟值有较大偏差;3个模式均能较好地模拟地表反射辐射,其中SHAW模式模拟值与观测值的偏差最小;对地表长波辐射的模拟,CLM模式的模拟最优;3个模式均能较好地反映感热、潜热通量的变化趋势,其中CLM模式对感热的模拟性能优于其他两个模式,在有降水发生后的湿润条件下,CLM模式对潜热的模拟性能最优,而无降水的干燥条件下,CLM模式的模拟偏差最大,NOAH模式对冬季潜热的模拟最优。总体而言,CLM模式能够更好地再现半干旱区地气之间的相互作用,但模式对土壤含水量及干燥条件下的潜热通量的模拟较差,模式对半干旱区陆气间的水文过程还有待进一步的研究和改进。
文摘利用陆面过程模式Common Land Model(CoLM),选取青藏高原上3个不同下垫面观测站(藏东南站、纳木错站和珠峰站)的观测资料,对这3个野外观测站进行了单点数值模拟试验。根据3个测站的试验数据,对模式中土壤孔隙度和饱和导水率进行了优化,针对青藏高原地区土壤层薄的特点,对模式中土壤分层方案进行了调整。结果表明,调整分层方案后的CoLM模式对3个测站土壤湿度的模拟性能较原分层方案有明显提高,平均偏差均减小0.014以上。但是与观测值相比,藏东南站土壤湿度的模拟整体偏低,纳木错站和珠峰站则整体偏高。对土壤温度而言,3个测站模拟与观测的相关系数都达到了0.9以上,珠峰站偏差较大,调整分层方案后模拟的偏差有一定的改进。模式较好地模拟了3个测站的净辐射、感热通量和潜热通量的日变化和季节变化情况,调整分层方案后潜热通量的改进最为明显。
文摘利用CLM(Common Land Model)模式对我国内蒙古奈曼旗农牧交错带沙漠和农田两种不同典型下垫面的陆面过程进行了数值模拟试验,并与外场试验观测结果进行了对比分析。结果表明:无论是沙漠还是农田试验,CLM都能够较好地模拟其辐射通量和土壤中的热传导特征,CLM的模拟结果能够真实地再现试验期间土壤热传导过程对天气过程的响应。相比而言,模式对沙漠地区长波辐射通量和干燥时期短波辐射通量的模拟结果好于农田,其原因可能是因为农田下垫面植被及土壤特征较沙漠复杂,有着很大的不确定性,造成了农田地表反照率和温度模拟的偏差。而对农田热传导的模拟结果好于沙漠,反映了CLM对含水量较大、持水力较强的农田下垫面的热传导模拟能力较好,而对含水量较小、持水力较弱的沙漠下垫面的热传导模拟能力相对较差。
文摘本文基于中国1:100万植被图、马里兰大学AVHRR森林覆盖资料和中国753个气象站点40年的降水气温资料,发展了一套用于气候模拟的中国陆面覆盖资料(Chinese land cover derived fromvegetation map,简称CLCV)。该套资料与CLM(Community Land Model)原来所用的MODIS(Moderate Resolution I maging Spectro-radiometer)陆面覆盖资料相比有较大不同:其中裸土比例减少了14.5%,森林、灌木、草原和农作物比例分别增加了3.3%、4.8%、4.4%和0.3%,冰川、湖泊和湿地比例分别增加了0.4%、0.8%和0.6%。将CLCV和MO-DIS资料分别与全国土地资源概查汇总结果分省统计资料和基于中国1km土地利用图的土地利用资料比较表明,CLCV与两者较为接近。最后,利用CLM模式分别采用CLCV与MODIS陆面覆盖资料在中国区域内进行数值模拟,结果显示,使用CLCV资料所模拟的蒸散增加了约7.7mm/a;地表反照率、感热和径流分别减小了约0.7%、0.3W/m2和7.6mm/a;与MODIS卫星反演地表反照率和GRDC(Global Runoff Data Centre)径流资料比较表明,利用CLCV资料所模拟的地表反照率有一定改进,并能基本模拟出径流分布趋势。