Maize is susceptible to a number of diseases that can infect all plant organs and serve as a constraint on cereal production. The reduction in cereal production caused by disease is estimated at an average of 9.4%. Co...Maize is susceptible to a number of diseases that can infect all plant organs and serve as a constraint on cereal production. The reduction in cereal production caused by disease is estimated at an average of 9.4%. Corn root rot contributes greatly to the reduction in grain production and quality. The main objective of this work was to review the research on root rot in maize to determine the susceptibility of genotypes to root rot and to quantify the inheritance of resistance to root rot in maize. The methodology used was a complete 8 × 8 diallel design planted during the year 1999/2000. Root discoloration, plant length, root volume, effective volume and yield were the evaluated parameters. To analyze the data and determine the combinatorial abilities, genetic correlations, heritability and correlated response, diallel analysis was used. Eight parental lines;P28, I137TN, MP706, E739, MO17, B37, B73, and B14 were planted. The lines were crossed into each other, all combinations according to the complete diallel model (Model 1). The F1 was harvested after maturation. For statistical analysis, the version of the Agrobase program (2016) was used. Results show that F1 hybrids showed significant differences in root rot discoloration, plant height, root volume, effective root volume and yield. The P28 line and the B73XE739 cross had, respectively, the highest general and specific combinations. Root discoloration had the highest genetic correlation (r<sub>A</sub> = 0.47) with plant length. Broad and narrow heritability for root rot discoloration were, respectively, h<sup>2</sup> = 0.81 and h<sub>2</sub><sub> </sub>= 0.51. Root rot discoloration showed the highest correlated response (C<sub>R</sub> = 0.14) on plant length.展开更多
Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with ex...Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with extremely low ear height and B73. Through the SNP-based genotyping and phenotypic characterization, 13 QTL distributed on the chromosomes (Chrs) of Chr1, Chr2, Chr5-Chr8 were detected for four traits of internode no. above ear (INa), average internode length above ear (ILaa), internode no. below ear (INb), and average internode length below ear (ILab). Phenotypic variation explained (PVE) by a single QTL ranged from 6.82% (qILab2-2) to 12.99% (qILaa5). Zm00001d016823 within the physical region of qILaa5, the major QTL for ILaa with the largest PVE was determined as the candidate through the genomic annotation and sequence alignment between EHel and B73. Product of Zm00001d016823 was annotated as a WEB family protein homogenous to At1g75720. qRT-PCR assay showed that Zm00001d016823 highly expressed within the tissue of internode, exhibiting statistically higher expression levels among internodes of IN4 to IN7 in EHel than those in B73 (P Zm00001d016823 might provide novel insight into molecular mechanism beyond phytohormones controlling internode development in maize.展开更多
Waterlogging strongly affects agronomic performance of maize (Zea mays L.). In order to investigate the suitable selection criteria of waterflooding tolerant genotypes, and identify the most susceptible stage and th...Waterlogging strongly affects agronomic performance of maize (Zea mays L.). In order to investigate the suitable selection criteria of waterflooding tolerant genotypes, and identify the most susceptible stage and the best continuous treatment time to waterlogging, 20 common maize inbred lines were subjected to successive artificial waterflooding at seedling stage, and waterlogging tolerance coefficient (WTC) was used to screen waterflooding tolerant genotypes. In addition, peroxidase (POD) activities and malondialdehyde (MDA) contents were measured for 6 of 20 lines. The results showed that the second leaf stage (V2) was the most susceptible stage, and 6 d after waterflooding was the best continuous treatment time. Dry weight (DW) of both shoots and roots of all lines were significantly reduced at 6 d time-point of waterlogging, compared to control. POD activities and MDA contents were negatively and significantly correlated, and the correlation coefficient was -0.9686 (P 〈 0.0001). According to the results, WTC of shoot DW can be used for practical screening as a suitable index, which is significantly different from control and waterlogged plants happened 6 d earlier. Furthermore, leaf chlorosis, MDA content and POD activities could also be used as reference index for material screening. The implications of the results for waterlogging-tolerant material screening and waterlogging-tolerant breeding have been discussed in maize.展开更多
Study on relative sensitivity of maize (Zea mays L.) Nongda108 and Nongda3138 to sulfony-lurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had hi...Study on relative sensitivity of maize (Zea mays L.) Nongda108 and Nongda3138 to sulfony-lurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had higher tolerance to chlorsulfuron and tribenuron-methyl than Nongda108 did. Chlorsulfuron had stronger growth inhibition to maize Nongda108 and Nongda3138 than tribenuron-methyl did. Study on target enzyme of sulfonylurea herbicide acetolactate synthase (ALS) showed that, chlorsulfuron and tribenuron-methyl inhibited ALS in vitro strongly, and non-competitively. In the same concentration of inhibitors, chlorsulfuron had stronger ALS activity inhibition than tribenuron-methyl did. Lower level of chlorsulfuron and tribenuron-methyl has no ALS activity inhibition in vivo, the ALS inhibition only occurred in the condition of high concentration of chlorsulfuron and tribenuron-methyl in vivo.展开更多
A field experiment was conducted during spring 2011 at Agronomic Research Area, University of Agriculture, Faisalabad, Pakistan to evaluate the comparative efficacy of Zn uptake and grain yield in three maize hybrids ...A field experiment was conducted during spring 2011 at Agronomic Research Area, University of Agriculture, Faisalabad, Pakistan to evaluate the comparative efficacy of Zn uptake and grain yield in three maize hybrids namely Pioneer-32F 10, Monsanto-6525 and Hycorn-8288 through the application of Zn in the form of ZnSO4. The ZnSO4 treatments comprised;soil application at the time of sowing @ 12 kg·ha-1 (Zn1), foliar application at vegetative stage (9 leaf stage) @ 1% ZnSO4 solution (Zn2) and foliar application at reproductive stage (anthesis) @ 1% ZnSO4 solution (Zn3) and one treatment was kept as a control, where zinc was not applied (Zn0). The experimental results showed substantial difference in all physiological and yield parameters except plant height and stem diameter. Statistically maximum grain yield (8.76 t·ha-1) was obtained with foliar spray of ZnSO4 at 9 leaf stage (Zn2) in case of Monsanto-6525. As regard to quality parameters, Pioneer-32F 10 and Hycorn-8288 accumulated more zinc contents in grains but Monsanto-6525 attained more zinc concentration in straw. Foliar spray of ZnSO4 at 9 leaf stage produced 19.42% more zinc contents in grains as compared to other ZnSO4 treatments. Foliar spray of ZnSO4 at 9 leaf stage in Monsanto-6525 hybrid produced higher grain yield.展开更多
A reliable system was developed for regeneration from mature embryos derived from callus of four maize inbred lines (Liao 7980, Dan 9818, Dan 340, and Dan 5026). The protocol was mainly based on a series of experime...A reliable system was developed for regeneration from mature embryos derived from callus of four maize inbred lines (Liao 7980, Dan 9818, Dan 340, and Dan 5026). The protocol was mainly based on a series of experiments involving the composition of culture medium. We found that 9 pM 2,4-dichlorophenoxyacetic acid in MS medium was optimum for the induction of callus. The induction frequency of primary calli was over 85% for four inbred lines tested. The addition of L- proline (12 mM) in subculture medium significantly promoted the formation of embryogenic callus but it did not significantly enhance growth rate of callus. Efficient shoot regeneration was obtained on regeneration medium containing 2.22 μM 6- benzylaminopurine in combinations with 4.64 μM Kinetin. Regenerated shoots were rooted on half-strength MS medium containing 2.85 μM indole-3-butyric acid. This plant regeneration system provides a foundation for genetic transformation of maize.展开更多
Cell wall architecture plays a key role in stalk strength and forage digestibility.Lignin,cellulose,and hemicellulose are the three main components of plant cell walls,and they can impact stalk quality by affecting th...Cell wall architecture plays a key role in stalk strength and forage digestibility.Lignin,cellulose,and hemicellulose are the three main components of plant cell walls,and they can impact stalk quality by affecting the structure and strength of the cell wall.To explore cell wall development during secondary cell wall lignification in maize stalks,conventional and conditional genetic mapping were used to identify the dynamic quantitative trait loci(QTLs)of the cell wall components and digestibility traits during five growth stages after silking.Acid detergent lignin(ADL),cellulose(CEL),acid detergent fiber(ADF),neutral detergent fiber(NDF),and in vitro dry matter digestibility(IVDMD)were evaluated in a maize recombinant inbred line(RIL)population.ADL,CEL,ADF,and NDF gradually increased from 10 to 40 days after silking(DAS),and then they decreased.IVDMD initially decreased until 40 DAS,and then it increased slightly.Seventytwo QTLs were identified for the five traits,and each accounted for 3.48–24.04%of the phenotypic variation.Six QTL hotspots were found,and they were localized in the 1.08,2.04,2.07,7.03,8.05,and 9.03 bins of the maize genome.Within the interval of the pleiotropic QTL identified in bin 1.08 of the maize genome,six genes associated with cell wall component biosynthesis were identified as potential candidate genes for stalk strength as well as cell wall-related traits.In addition,26 conditional QTLs were detected in the five stages for all of the investigated traits.Twenty-two of the 26 conditional QTLs were found at 30 DAS conditioned using the values of 20 DAS,and at 50 DAS conditioned using the values of 40 DAS.These results indicated that cell wall-related traits are regulated by many genes,which are specifically expressed at different stages after silking.Simultaneous improvements in both forage digestibility and lodging resistance could be achieved by pyramiding multiple beneficial QTL alleles identified in this study.展开更多
Improvement in seed vigor under adverse condition is an important object in maize breeding nowadays. Because the higher sowing quality of seeds is necessary for the development of the agriculture production and better...Improvement in seed vigor under adverse condition is an important object in maize breeding nowadays. Because the higher sowing quality of seeds is necessary for the development of the agriculture production and better able to resist all kinds of adversity in the seeds storage. So it is helpful for long-term preservation of germplasm resource. In our study, two connected recombinant inbred line (RIL) populations, which derived from the crosses Yu82 × Shen137 and Yu537A × Shen137 respectively, were evaluated for four related traits of seed vigor under three aging treatments. Meta-analysis was used to integrate genetic maps and detected QTL across two populations. In total, 74 QTL and 20 meta-QTL (mQTL) were detected. All QTLs with contributions (R2) over 10% were consistently detected in at least one of aging treatments and integrated in mQTL. Four key mQTLs (mQTL2-2, mQTL5-3, mQTL6 and mQTL8) with R2 of some initial QTLs > 10% included 5-9 initial QTLs associated with 2-4 traits. Therefore, the chromosome regions for four mQTLs with high QTL co-localization might be hot spots of the important QTLs for the associated traits. Twenty-two key candidate genes regulating four related traits of seed vigor mapped in 14 corresponding mQTLs. In particular, At5g67360, 45238345/At1g70730/At1g09640 and 298201206 were mapped within the important mQTL5-3, mQTL6 and mQTL8 regions, respectively. Fine mapping or construction of single chromosome segment lines for genetic regions of the three mQTLs is worth further study and could be put to use molecular marker-assisted breeding and pyramiding QTLs in maize.展开更多
Drought, like many other environmental stresses, has adverse effects on crop yield including maize (Zea mays L.). Low water availability is one of the major causes for maize yield reductions affecting the majority of ...Drought, like many other environmental stresses, has adverse effects on crop yield including maize (Zea mays L.). Low water availability is one of the major causes for maize yield reductions affecting the majority of the farmed regions around the world. Therefore, the development of drought-tolerant lines becomes increasingly more important. In maize, a major effect of water stress is a delay in silking, resulting in an increase in the anthesis-silking interval, which is an important cause of yield failures. Diverse strategies are used by breeding programs to improve drought tolerance. Conventional breeding has improved the drought tolerance of temperate maize hybrids and the use of managed drought environments, accurate phenotyping, and the identification and deployment of secondary traits has been effective in improving the drought tolerance of tropical maize populations and hybrids as well. The contribution of molecular biology will be potential to identify key genes involved in metabolic pathways related to the stress response. Functional genomics, reverse and forward genetics, and comparative genomics are all being deployed with a view to achieving these goals. However, a multidisciplinary approach, which ties together breeding, physiology and molecular genetics, can bring a synergistic understanding to the response of maize to water deficit and improve the breeding efficiency.展开更多
While being one of the world's most important crops,maize ( Zea mays L.) is still difficult to regenerate in tissue culture which severely limits its improvement by genetic engineering.Currently,immature zygotic e...While being one of the world's most important crops,maize ( Zea mays L.) is still difficult to regenerate in tissue culture which severely limits its improvement by genetic engineering.Currently,immature zygotic embryos provide the predominantly used material for regeneration and transformation.However,the procedures involved are often laborious,time-consuming and season-dependent.Here,we further improved an efficient tissue culture and plant regeneration system that uses maize leaf segments of young seedlings as an alternative explant source.Embryogenic calli were evaluated by morphology,proliferation and regeneration capacity.All these indicated that seedling-derived leaf materials have the potential to replace immature embryos for tissue culture and regeneration.展开更多
common maize synthetic rate( Photosynthetic characteristics were probed by sweet maize, waxy maize, high starch maize and The results revealed that leaf area index (LAI), chlorophyll a content, chlorophyll b cont...common maize synthetic rate( Photosynthetic characteristics were probed by sweet maize, waxy maize, high starch maize and The results revealed that leaf area index (LAI), chlorophyll a content, chlorophyll b content,photo-PR) showed single peak curve at the whole growth stage. The stages of peak were different according to different varieties. NEAUS4 had the lowest peak and while SIDAN 19 had the highest among all stages. Ratio of chlorophyll a to b was low at seedling stage, reached the peak atjointing stage and then declined. SIDAN 19 had the lower level at the last stages.展开更多
Cytoplasmic male sterility (CMS) is a maternally inherited trait that suppresses the production of viable pollen. CMS is a useful biological tool for confinement strategies to facilitate coexistence of genetically mod...Cytoplasmic male sterility (CMS) is a maternally inherited trait that suppresses the production of viable pollen. CMS is a useful biological tool for confinement strategies to facilitate coexistence of genetically modified (GM) and non-GM crops in case where it is required. The trait is reversible and can be restored to fertility in the presence of nuclear restorer genes (Rf genes) and by environmental impacts. The aim of this study was to investigate the influence of the level of irrigation on the stability of CMS maize hybrids under defined greenhouse conditions. Additionally the combination of irrigation and air temperature was studied. Three CMS maize hybrids were grown with different levels of irrigation and in different temperature regimes. Tassel characteristics, pollen production and fertility were assessed. The CMS stability was high in hot air temperatures and decreased in lower temperatures. The level of irrigation had no major effect on the level of sterility. The extent of these phenomena was depending on the genotype of CMS maize and should be known before using CMS for coexistence purposes.展开更多
As the most important organ in plant photosynthesis, the leaf plays an important role in plant growth and development. Leaf senescence is associated with fundamental changes in the proteome. To research the molecular ...As the most important organ in plant photosynthesis, the leaf plays an important role in plant growth and development. Leaf senescence is associated with fundamental changes in the proteome. To research the molecular mechanisms of leaf senescence, protein expression in senescing maize ear leaves grown under field conditions was analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight mass spectrometry(MALDI-TOF/TOF MS). A total of 60 senescence-associated proteins were identified. The identified proteins are involved in many biological processes, especially energy, metabolism and protein synthesis. Several of the identified proteins have not been previously reported as senescence-associated, including glycine-rich RNA-binding protein.展开更多
Grain filling is the physiological process for determining the obtainment of yield in cereal crops.The grain-filling characteristics of 50 maize brand hybrids released from 1964 to 2014 in China were assayed across mu...Grain filling is the physiological process for determining the obtainment of yield in cereal crops.The grain-filling characteristics of 50 maize brand hybrids released from 1964 to 2014 in China were assayed across multiple environments.We found that the grain-filling duration(54.46%)and rate(43.40%)at the effective grain-filling phase greatly contributed to the final performance parameter of 100-kernel weight(HKW).Meanwhile,along with the significant increase in HKW,the accumulated growing degree days(GDDs)for the actual grain-filling period duration(AFPD)among the selected brand hybrids released from the 1960s to the 2010s in China had a decadal increase of 23.41℃ d.However,there was a decadal increase of only 19.76℃ d for GDDs of the days from sowing to physiological maturity(DPM),which was also demonstrated by a continuous decrease in the ratio between the days from sowing to silking(DS)and DPM(i.e.,from 53.24%in the 1960s to 49.78%in the 2010s).In contrast,there were no significant changes in grain-filling rate along with the release years of the selected hybrids.Moreover,the stability of grain-filling characteristics across environments also significantly increased along with the hybrid release years.We also found that the exotic hybrids showed a longer grain-filling duration at the effective grain-filling phase and more stability of the grain-filling characteristics than those of the Chinese local hybrids.According to the results of this study,it is expected that the relatively longer grain-filling duration,shorter DS,higher grain-filling rate,and steady grain-filling characteristics would contribute to the yield improvement of maize hybrids in the future.展开更多
Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),charact...Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),characterized by dwarfing,short internodes,and dark green and short leaves.Map-based gene cloning and allelic verification confirmed that ZmGAD5 encodes ent-kaurenoic acid oxidase(KAO),which catalyzes KA(ent-kaurenoic acid)to GA12 conversion during GA biosynthesis in maize.ZmGAD5 is localized to the endoplasmic reticulum and is present in multiple maize organs.In gad5-1,the expression of ZmGAD5 is severely reduced,and the levels of the direct substrate of KAO,KA,is increased,leading to a reduction in GA content.The abnormal phenotype of gad5-1 was restored by exogenous application of GA3.The biomass,plant height,and levels of GA12 and GA3 in transgenic Arabidopsis overexpressing ZmGAD5 were increased in comparison with the corresponding controls Col-0.These findings deepen our understanding of genes involved in GA biosynthesis,and could lead to the development of maize lines with improved architecture and higher planting-density tolerance.展开更多
Two hybrids of maize with different responses to sulfur were used in the pool experiment. The effects of nitrogen and sulfur on the grain quality of maize were evaluated. The results indicated that grain quality chang...Two hybrids of maize with different responses to sulfur were used in the pool experiment. The effects of nitrogen and sulfur on the grain quality of maize were evaluated. The results indicated that grain quality changed with the nutrition supply. The contents of proteins, amino acids, soluble sugar, crude fat, oil, N, P, K, S and microelements in the grain were improved due to nitrogen and sulfur fertilizer addition. But the effects of nitrogen and sulfur were not the same. Nitrogen increased starch content of the grain, but S decreased the content. Both N and S enhanced the proportion of amylopectin in starch. Sulfur nutrition significantly improved the grain quality of maize when a large amount of nitrogen was used together. Both hybrids had similar response to N and S treatments.展开更多
Maize(Zea mays L.)is an indispensable crop worldwide for food,feed,and bioenergy production.Fusarium verticillioides(F.verticillioides)is a widely distributed phytopathogen and incites multiple destructive diseases in...Maize(Zea mays L.)is an indispensable crop worldwide for food,feed,and bioenergy production.Fusarium verticillioides(F.verticillioides)is a widely distributed phytopathogen and incites multiple destructive diseases in maize:seedling blight,stalk rot,ear rot,and seed rot.As a soil-,seed-,and airborne pathogen,F.verticillioides can survive in soil or plant residue and systemically infect maize via roots,contaminated seed,silks,or external wounds,posing a severe threat to maize production and quality.Infection triggers complex immune responses:induction of defense-response genes,changes in reactive oxygen species,plant hormone levels and oxylipins,and alterations in secondary metabolites such as flavonoids,phenylpropanoids,phenolic compounds,and benzoxazinoid defense compounds.Breeding resistant maize cultivars is the preferred approach to reducing F.verticillioides infection and mycotoxin contamination.Reliable phenotyping systems are prerequisites for elucidating the genetic structure and molecular mechanism of maize resistance to F.verticillioides.Although many F.verticillioides resistance genes have been identified by genome-wide association study,linkage analysis,bulkedsegregant analysis,and various omics technologies,few have been functionally validated and applied in molecular breeding.This review summarizes research progress on the infection cycle of F.verticillioides in maize,phenotyping evaluation systems for F.verticillioides resistance,quantitative trait loci and genes associated with F.verticillioides resistance,and molecular mechanisms underlying maize defense against F.verticillioides,and discusses potential avenues for molecular design breeding to improve maize resistance to F.verticillioides.展开更多
Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than Ii00 protein spots, 72 of which were dete...Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than Ii00 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up- regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption /ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, ii were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism.展开更多
The pollen tube pathway method of transformation has been reported to be successful in most crops, but less successfu in maizc. DNA can be transferred by cutting the stigma following pollination and applying the DNA s...The pollen tube pathway method of transformation has been reported to be successful in most crops, but less successfu in maizc. DNA can be transferred by cutting the stigma following pollination and applying the DNA solution in a suitable period DNA presumably reaches the ovary by flowing down the pollen tube and then integrates into the just fertilized but undivided zygotic cells. To provide the molecular evidence for this procedure, the plasmids pGBIRC carrying a CaMV35S promoter-PPT acetyle transferase (bar) gene-nos terminator genc fusion construct were used. Total 3 276 seeds were produced from the ears trcated with DNA. It was found that 35 scedlings were GUS assay positive, but less intense than that of the positive controls, of which 17 were PCR amplification positive. But, only 13 of the seeds from the plants treated with DNA containing the bar gene were found to be resistant compared with the negative control. Less than 1.07% of progeny seedlings tested cxpressed a herbicide positive reaction and polymerase chain reaction (PCR) with seedling DNA did detect the bar genc. Morphological variation was observed in six plants. We succeed in obtain PPT-resistant maize inbred lines via pollen tube pathway展开更多
Maize production in tropical Africa is often negatively affected by drought. The main objectives of the present study were to 1) analyze the impact of water stress on the agro-morphological performance of two varietie...Maize production in tropical Africa is often negatively affected by drought. The main objectives of the present study were to 1) analyze the impact of water stress on the agro-morphological performance of two varieties of Quality Protein Maize (QPM) compared to two normal maize varieties and 2) assess their adaptive response in contrasting water environments. Agro-morphological responses to water deficiency of maize (Zea mays L.) were assessed in controlled experiments using four maize varieties, two normal maize (Zm725 and Mus1) and two quality protein maize (Mudishi1 and Mudishi3) varieties. They were subjected to three water regimes (100%, 60%, 30% water retention capacity) at the beginning of the bloom stage, using a Fischer block design with four replications. Significant differences (p < 0.05) among varieties, water regimes and their interactions for plant growth and production parameters were observed. Reduction of water supply to plants caused changes in aerial and underground plant growth. Plant stem height, foliar expansion, and root system development characterizing vegetative growth showed variation in varietal response to water regimes. Mus1 (normal maize variety) was the best adapted to variations in water regimes because they developed an important root volume to adapt to the effects of water deficit while maintaining their morphological and productive characteristics.展开更多
文摘Maize is susceptible to a number of diseases that can infect all plant organs and serve as a constraint on cereal production. The reduction in cereal production caused by disease is estimated at an average of 9.4%. Corn root rot contributes greatly to the reduction in grain production and quality. The main objective of this work was to review the research on root rot in maize to determine the susceptibility of genotypes to root rot and to quantify the inheritance of resistance to root rot in maize. The methodology used was a complete 8 × 8 diallel design planted during the year 1999/2000. Root discoloration, plant length, root volume, effective volume and yield were the evaluated parameters. To analyze the data and determine the combinatorial abilities, genetic correlations, heritability and correlated response, diallel analysis was used. Eight parental lines;P28, I137TN, MP706, E739, MO17, B37, B73, and B14 were planted. The lines were crossed into each other, all combinations according to the complete diallel model (Model 1). The F1 was harvested after maturation. For statistical analysis, the version of the Agrobase program (2016) was used. Results show that F1 hybrids showed significant differences in root rot discoloration, plant height, root volume, effective root volume and yield. The P28 line and the B73XE739 cross had, respectively, the highest general and specific combinations. Root discoloration had the highest genetic correlation (r<sub>A</sub> = 0.47) with plant length. Broad and narrow heritability for root rot discoloration were, respectively, h<sup>2</sup> = 0.81 and h<sub>2</sub><sub> </sub>= 0.51. Root rot discoloration showed the highest correlated response (C<sub>R</sub> = 0.14) on plant length.
文摘Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with extremely low ear height and B73. Through the SNP-based genotyping and phenotypic characterization, 13 QTL distributed on the chromosomes (Chrs) of Chr1, Chr2, Chr5-Chr8 were detected for four traits of internode no. above ear (INa), average internode length above ear (ILaa), internode no. below ear (INb), and average internode length below ear (ILab). Phenotypic variation explained (PVE) by a single QTL ranged from 6.82% (qILab2-2) to 12.99% (qILaa5). Zm00001d016823 within the physical region of qILaa5, the major QTL for ILaa with the largest PVE was determined as the candidate through the genomic annotation and sequence alignment between EHel and B73. Product of Zm00001d016823 was annotated as a WEB family protein homogenous to At1g75720. qRT-PCR assay showed that Zm00001d016823 highly expressed within the tissue of internode, exhibiting statistically higher expression levels among internodes of IN4 to IN7 in EHel than those in B73 (P Zm00001d016823 might provide novel insight into molecular mechanism beyond phytohormones controlling internode development in maize.
基金supported by the Natural Science Foundation of Hubei Province, China (2008CDB079)the National High Technology Research and Development Program of China (863 Program,2006AA100103)
文摘Waterlogging strongly affects agronomic performance of maize (Zea mays L.). In order to investigate the suitable selection criteria of waterflooding tolerant genotypes, and identify the most susceptible stage and the best continuous treatment time to waterlogging, 20 common maize inbred lines were subjected to successive artificial waterflooding at seedling stage, and waterlogging tolerance coefficient (WTC) was used to screen waterflooding tolerant genotypes. In addition, peroxidase (POD) activities and malondialdehyde (MDA) contents were measured for 6 of 20 lines. The results showed that the second leaf stage (V2) was the most susceptible stage, and 6 d after waterflooding was the best continuous treatment time. Dry weight (DW) of both shoots and roots of all lines were significantly reduced at 6 d time-point of waterlogging, compared to control. POD activities and MDA contents were negatively and significantly correlated, and the correlation coefficient was -0.9686 (P 〈 0.0001). According to the results, WTC of shoot DW can be used for practical screening as a suitable index, which is significantly different from control and waterlogged plants happened 6 d earlier. Furthermore, leaf chlorosis, MDA content and POD activities could also be used as reference index for material screening. The implications of the results for waterlogging-tolerant material screening and waterlogging-tolerant breeding have been discussed in maize.
文摘Study on relative sensitivity of maize (Zea mays L.) Nongda108 and Nongda3138 to sulfony-lurea herbicide chlorsulfuron and tribenuron-methyl using maize taproot length by sand bioassy indicated that, Nongda3138 had higher tolerance to chlorsulfuron and tribenuron-methyl than Nongda108 did. Chlorsulfuron had stronger growth inhibition to maize Nongda108 and Nongda3138 than tribenuron-methyl did. Study on target enzyme of sulfonylurea herbicide acetolactate synthase (ALS) showed that, chlorsulfuron and tribenuron-methyl inhibited ALS in vitro strongly, and non-competitively. In the same concentration of inhibitors, chlorsulfuron had stronger ALS activity inhibition than tribenuron-methyl did. Lower level of chlorsulfuron and tribenuron-methyl has no ALS activity inhibition in vivo, the ALS inhibition only occurred in the condition of high concentration of chlorsulfuron and tribenuron-methyl in vivo.
文摘A field experiment was conducted during spring 2011 at Agronomic Research Area, University of Agriculture, Faisalabad, Pakistan to evaluate the comparative efficacy of Zn uptake and grain yield in three maize hybrids namely Pioneer-32F 10, Monsanto-6525 and Hycorn-8288 through the application of Zn in the form of ZnSO4. The ZnSO4 treatments comprised;soil application at the time of sowing @ 12 kg·ha-1 (Zn1), foliar application at vegetative stage (9 leaf stage) @ 1% ZnSO4 solution (Zn2) and foliar application at reproductive stage (anthesis) @ 1% ZnSO4 solution (Zn3) and one treatment was kept as a control, where zinc was not applied (Zn0). The experimental results showed substantial difference in all physiological and yield parameters except plant height and stem diameter. Statistically maximum grain yield (8.76 t·ha-1) was obtained with foliar spray of ZnSO4 at 9 leaf stage (Zn2) in case of Monsanto-6525. As regard to quality parameters, Pioneer-32F 10 and Hycorn-8288 accumulated more zinc contents in grains but Monsanto-6525 attained more zinc concentration in straw. Foliar spray of ZnSO4 at 9 leaf stage produced 19.42% more zinc contents in grains as compared to other ZnSO4 treatments. Foliar spray of ZnSO4 at 9 leaf stage in Monsanto-6525 hybrid produced higher grain yield.
文摘A reliable system was developed for regeneration from mature embryos derived from callus of four maize inbred lines (Liao 7980, Dan 9818, Dan 340, and Dan 5026). The protocol was mainly based on a series of experiments involving the composition of culture medium. We found that 9 pM 2,4-dichlorophenoxyacetic acid in MS medium was optimum for the induction of callus. The induction frequency of primary calli was over 85% for four inbred lines tested. The addition of L- proline (12 mM) in subculture medium significantly promoted the formation of embryogenic callus but it did not significantly enhance growth rate of callus. Efficient shoot regeneration was obtained on regeneration medium containing 2.22 μM 6- benzylaminopurine in combinations with 4.64 μM Kinetin. Regenerated shoots were rooted on half-strength MS medium containing 2.85 μM indole-3-butyric acid. This plant regeneration system provides a foundation for genetic transformation of maize.
基金the National Natural Science Foundation of China(31801367)the National Key Research and Development Program of China(2016YFD0101200)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Cell wall architecture plays a key role in stalk strength and forage digestibility.Lignin,cellulose,and hemicellulose are the three main components of plant cell walls,and they can impact stalk quality by affecting the structure and strength of the cell wall.To explore cell wall development during secondary cell wall lignification in maize stalks,conventional and conditional genetic mapping were used to identify the dynamic quantitative trait loci(QTLs)of the cell wall components and digestibility traits during five growth stages after silking.Acid detergent lignin(ADL),cellulose(CEL),acid detergent fiber(ADF),neutral detergent fiber(NDF),and in vitro dry matter digestibility(IVDMD)were evaluated in a maize recombinant inbred line(RIL)population.ADL,CEL,ADF,and NDF gradually increased from 10 to 40 days after silking(DAS),and then they decreased.IVDMD initially decreased until 40 DAS,and then it increased slightly.Seventytwo QTLs were identified for the five traits,and each accounted for 3.48–24.04%of the phenotypic variation.Six QTL hotspots were found,and they were localized in the 1.08,2.04,2.07,7.03,8.05,and 9.03 bins of the maize genome.Within the interval of the pleiotropic QTL identified in bin 1.08 of the maize genome,six genes associated with cell wall component biosynthesis were identified as potential candidate genes for stalk strength as well as cell wall-related traits.In addition,26 conditional QTLs were detected in the five stages for all of the investigated traits.Twenty-two of the 26 conditional QTLs were found at 30 DAS conditioned using the values of 20 DAS,and at 50 DAS conditioned using the values of 40 DAS.These results indicated that cell wall-related traits are regulated by many genes,which are specifically expressed at different stages after silking.Simultaneous improvements in both forage digestibility and lodging resistance could be achieved by pyramiding multiple beneficial QTL alleles identified in this study.
文摘Improvement in seed vigor under adverse condition is an important object in maize breeding nowadays. Because the higher sowing quality of seeds is necessary for the development of the agriculture production and better able to resist all kinds of adversity in the seeds storage. So it is helpful for long-term preservation of germplasm resource. In our study, two connected recombinant inbred line (RIL) populations, which derived from the crosses Yu82 × Shen137 and Yu537A × Shen137 respectively, were evaluated for four related traits of seed vigor under three aging treatments. Meta-analysis was used to integrate genetic maps and detected QTL across two populations. In total, 74 QTL and 20 meta-QTL (mQTL) were detected. All QTLs with contributions (R2) over 10% were consistently detected in at least one of aging treatments and integrated in mQTL. Four key mQTLs (mQTL2-2, mQTL5-3, mQTL6 and mQTL8) with R2 of some initial QTLs > 10% included 5-9 initial QTLs associated with 2-4 traits. Therefore, the chromosome regions for four mQTLs with high QTL co-localization might be hot spots of the important QTLs for the associated traits. Twenty-two key candidate genes regulating four related traits of seed vigor mapped in 14 corresponding mQTLs. In particular, At5g67360, 45238345/At1g70730/At1g09640 and 298201206 were mapped within the important mQTL5-3, mQTL6 and mQTL8 regions, respectively. Fine mapping or construction of single chromosome segment lines for genetic regions of the three mQTLs is worth further study and could be put to use molecular marker-assisted breeding and pyramiding QTLs in maize.
文摘Drought, like many other environmental stresses, has adverse effects on crop yield including maize (Zea mays L.). Low water availability is one of the major causes for maize yield reductions affecting the majority of the farmed regions around the world. Therefore, the development of drought-tolerant lines becomes increasingly more important. In maize, a major effect of water stress is a delay in silking, resulting in an increase in the anthesis-silking interval, which is an important cause of yield failures. Diverse strategies are used by breeding programs to improve drought tolerance. Conventional breeding has improved the drought tolerance of temperate maize hybrids and the use of managed drought environments, accurate phenotyping, and the identification and deployment of secondary traits has been effective in improving the drought tolerance of tropical maize populations and hybrids as well. The contribution of molecular biology will be potential to identify key genes involved in metabolic pathways related to the stress response. Functional genomics, reverse and forward genetics, and comparative genomics are all being deployed with a view to achieving these goals. However, a multidisciplinary approach, which ties together breeding, physiology and molecular genetics, can bring a synergistic understanding to the response of maize to water deficit and improve the breeding efficiency.
文摘While being one of the world's most important crops,maize ( Zea mays L.) is still difficult to regenerate in tissue culture which severely limits its improvement by genetic engineering.Currently,immature zygotic embryos provide the predominantly used material for regeneration and transformation.However,the procedures involved are often laborious,time-consuming and season-dependent.Here,we further improved an efficient tissue culture and plant regeneration system that uses maize leaf segments of young seedlings as an alternative explant source.Embryogenic calli were evaluated by morphology,proliferation and regeneration capacity.All these indicated that seedling-derived leaf materials have the potential to replace immature embryos for tissue culture and regeneration.
文摘common maize synthetic rate( Photosynthetic characteristics were probed by sweet maize, waxy maize, high starch maize and The results revealed that leaf area index (LAI), chlorophyll a content, chlorophyll b content,photo-PR) showed single peak curve at the whole growth stage. The stages of peak were different according to different varieties. NEAUS4 had the lowest peak and while SIDAN 19 had the highest among all stages. Ratio of chlorophyll a to b was low at seedling stage, reached the peak atjointing stage and then declined. SIDAN 19 had the lower level at the last stages.
文摘Cytoplasmic male sterility (CMS) is a maternally inherited trait that suppresses the production of viable pollen. CMS is a useful biological tool for confinement strategies to facilitate coexistence of genetically modified (GM) and non-GM crops in case where it is required. The trait is reversible and can be restored to fertility in the presence of nuclear restorer genes (Rf genes) and by environmental impacts. The aim of this study was to investigate the influence of the level of irrigation on the stability of CMS maize hybrids under defined greenhouse conditions. Additionally the combination of irrigation and air temperature was studied. Three CMS maize hybrids were grown with different levels of irrigation and in different temperature regimes. Tassel characteristics, pollen production and fertility were assessed. The CMS stability was high in hot air temperatures and decreased in lower temperatures. The level of irrigation had no major effect on the level of sterility. The extent of these phenomena was depending on the genotype of CMS maize and should be known before using CMS for coexistence purposes.
基金supports from the National Natural Science Foundation of China (31171497)the National Basic Research Program of China (973 Program, 2011CB100105)+1 种基金the Corn Industry Technology System, Ministry of Agriculture, China (CARS-02)the Special Fund for Agro-scientific Research in the Public Interest, China (201203096, 201203100)
文摘As the most important organ in plant photosynthesis, the leaf plays an important role in plant growth and development. Leaf senescence is associated with fundamental changes in the proteome. To research the molecular mechanisms of leaf senescence, protein expression in senescing maize ear leaves grown under field conditions was analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight mass spectrometry(MALDI-TOF/TOF MS). A total of 60 senescence-associated proteins were identified. The identified proteins are involved in many biological processes, especially energy, metabolism and protein synthesis. Several of the identified proteins have not been previously reported as senescence-associated, including glycine-rich RNA-binding protein.
基金partly supported by the National Key R&D Program of China(2016YFD0100303 and 2016YFD0100103)the Fundamental Research Funds for Central Non-Profit of Institute of Crop Sciences,Chinese Academy of Agricultural Sciences(Y2020YJ09 and CAAS-ZDRW202109)the Agricultural Science and Technology Innovation Program,China(ASTIP)。
文摘Grain filling is the physiological process for determining the obtainment of yield in cereal crops.The grain-filling characteristics of 50 maize brand hybrids released from 1964 to 2014 in China were assayed across multiple environments.We found that the grain-filling duration(54.46%)and rate(43.40%)at the effective grain-filling phase greatly contributed to the final performance parameter of 100-kernel weight(HKW).Meanwhile,along with the significant increase in HKW,the accumulated growing degree days(GDDs)for the actual grain-filling period duration(AFPD)among the selected brand hybrids released from the 1960s to the 2010s in China had a decadal increase of 23.41℃ d.However,there was a decadal increase of only 19.76℃ d for GDDs of the days from sowing to physiological maturity(DPM),which was also demonstrated by a continuous decrease in the ratio between the days from sowing to silking(DS)and DPM(i.e.,from 53.24%in the 1960s to 49.78%in the 2010s).In contrast,there were no significant changes in grain-filling rate along with the release years of the selected hybrids.Moreover,the stability of grain-filling characteristics across environments also significantly increased along with the hybrid release years.We also found that the exotic hybrids showed a longer grain-filling duration at the effective grain-filling phase and more stability of the grain-filling characteristics than those of the Chinese local hybrids.According to the results of this study,it is expected that the relatively longer grain-filling duration,shorter DS,higher grain-filling rate,and steady grain-filling characteristics would contribute to the yield improvement of maize hybrids in the future.
基金the National Natural Science Foundation of China(U21A20206,Chun-Peng Song)the Project of Sanya Yazhou Bay Science and Technology City(SCKJJYRC-2022-78,Baozhu Li)+1 种基金the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(21IRTSTHN019,Siyi Guo)the 111 Project of China(D16014).
文摘Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),characterized by dwarfing,short internodes,and dark green and short leaves.Map-based gene cloning and allelic verification confirmed that ZmGAD5 encodes ent-kaurenoic acid oxidase(KAO),which catalyzes KA(ent-kaurenoic acid)to GA12 conversion during GA biosynthesis in maize.ZmGAD5 is localized to the endoplasmic reticulum and is present in multiple maize organs.In gad5-1,the expression of ZmGAD5 is severely reduced,and the levels of the direct substrate of KAO,KA,is increased,leading to a reduction in GA content.The abnormal phenotype of gad5-1 was restored by exogenous application of GA3.The biomass,plant height,and levels of GA12 and GA3 in transgenic Arabidopsis overexpressing ZmGAD5 were increased in comparison with the corresponding controls Col-0.These findings deepen our understanding of genes involved in GA biosynthesis,and could lead to the development of maize lines with improved architecture and higher planting-density tolerance.
基金supported by National Natural Science Foundation of China(39870525).
文摘Two hybrids of maize with different responses to sulfur were used in the pool experiment. The effects of nitrogen and sulfur on the grain quality of maize were evaluated. The results indicated that grain quality changed with the nutrition supply. The contents of proteins, amino acids, soluble sugar, crude fat, oil, N, P, K, S and microelements in the grain were improved due to nitrogen and sulfur fertilizer addition. But the effects of nitrogen and sulfur were not the same. Nitrogen increased starch content of the grain, but S decreased the content. Both N and S enhanced the proportion of amylopectin in starch. Sulfur nutrition significantly improved the grain quality of maize when a large amount of nitrogen was used together. Both hybrids had similar response to N and S treatments.
基金the National Natural Science Foundation of China(32201787,32201793)the Innovation Special Program of Henan Agricultural University for Science and Technology(30501044)the Special Support Fund for High-Level Talents of Henan Agricultural University(30501302).
文摘Maize(Zea mays L.)is an indispensable crop worldwide for food,feed,and bioenergy production.Fusarium verticillioides(F.verticillioides)is a widely distributed phytopathogen and incites multiple destructive diseases in maize:seedling blight,stalk rot,ear rot,and seed rot.As a soil-,seed-,and airborne pathogen,F.verticillioides can survive in soil or plant residue and systemically infect maize via roots,contaminated seed,silks,or external wounds,posing a severe threat to maize production and quality.Infection triggers complex immune responses:induction of defense-response genes,changes in reactive oxygen species,plant hormone levels and oxylipins,and alterations in secondary metabolites such as flavonoids,phenylpropanoids,phenolic compounds,and benzoxazinoid defense compounds.Breeding resistant maize cultivars is the preferred approach to reducing F.verticillioides infection and mycotoxin contamination.Reliable phenotyping systems are prerequisites for elucidating the genetic structure and molecular mechanism of maize resistance to F.verticillioides.Although many F.verticillioides resistance genes have been identified by genome-wide association study,linkage analysis,bulkedsegregant analysis,and various omics technologies,few have been functionally validated and applied in molecular breeding.This review summarizes research progress on the infection cycle of F.verticillioides in maize,phenotyping evaluation systems for F.verticillioides resistance,quantitative trait loci and genes associated with F.verticillioides resistance,and molecular mechanisms underlying maize defense against F.verticillioides,and discusses potential avenues for molecular design breeding to improve maize resistance to F.verticillioides.
基金supported by the National High-technology Project of China (2006AA100103)the Key Project of Henan Province of China (0620010200)
文摘Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than Ii00 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up- regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption /ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, ii were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism.
文摘The pollen tube pathway method of transformation has been reported to be successful in most crops, but less successfu in maizc. DNA can be transferred by cutting the stigma following pollination and applying the DNA solution in a suitable period DNA presumably reaches the ovary by flowing down the pollen tube and then integrates into the just fertilized but undivided zygotic cells. To provide the molecular evidence for this procedure, the plasmids pGBIRC carrying a CaMV35S promoter-PPT acetyle transferase (bar) gene-nos terminator genc fusion construct were used. Total 3 276 seeds were produced from the ears trcated with DNA. It was found that 35 scedlings were GUS assay positive, but less intense than that of the positive controls, of which 17 were PCR amplification positive. But, only 13 of the seeds from the plants treated with DNA containing the bar gene were found to be resistant compared with the negative control. Less than 1.07% of progeny seedlings tested cxpressed a herbicide positive reaction and polymerase chain reaction (PCR) with seedling DNA did detect the bar genc. Morphological variation was observed in six plants. We succeed in obtain PPT-resistant maize inbred lines via pollen tube pathway
文摘Maize production in tropical Africa is often negatively affected by drought. The main objectives of the present study were to 1) analyze the impact of water stress on the agro-morphological performance of two varieties of Quality Protein Maize (QPM) compared to two normal maize varieties and 2) assess their adaptive response in contrasting water environments. Agro-morphological responses to water deficiency of maize (Zea mays L.) were assessed in controlled experiments using four maize varieties, two normal maize (Zm725 and Mus1) and two quality protein maize (Mudishi1 and Mudishi3) varieties. They were subjected to three water regimes (100%, 60%, 30% water retention capacity) at the beginning of the bloom stage, using a Fischer block design with four replications. Significant differences (p < 0.05) among varieties, water regimes and their interactions for plant growth and production parameters were observed. Reduction of water supply to plants caused changes in aerial and underground plant growth. Plant stem height, foliar expansion, and root system development characterizing vegetative growth showed variation in varietal response to water regimes. Mus1 (normal maize variety) was the best adapted to variations in water regimes because they developed an important root volume to adapt to the effects of water deficit while maintaining their morphological and productive characteristics.