The Electromagnetic Compatibility (EMC) of direct current (DC) motor windings is a system model which is used to reflect the functional characters of the system in the whole EMC specified frequency (150 KHz ~ 30 MHz)....The Electromagnetic Compatibility (EMC) of direct current (DC) motor windings is a system model which is used to reflect the functional characters of the system in the whole EMC specified frequency (150 KHz ~ 30 MHz). For most motor designing process, it is always used to evaluate the inductance of windings in lower or working frequency;however, when analyzing the conducted interference, it is necessary to take some pa-rameters in high frequency into account in building up the EMC model, such as the noticeable capacitance distributed among the windings or between windings and shells. Past research neglected the common-mode current generated by the high frequency interference within motor bearings coupled with shells, since the parasitic capacitance of rotor core comes from armature windings supplied sufficient paths. In EMC model-ing process for DC motor problem, first, test the impedance of windings by experiments;then, generate the equivalent circuit with overall parameters. At present, it is a difficulty that how to choose the parameters. Most researchers preferred to adopt analytical calculation results, however, it could not reflect the essence of the model since it requires many simplification. Based on this point, this paper adopted ant colony algorithm (ACA) with positive feedback to intelligently search and globally optimize the parameters of equivalent cir-cuit. Simulation result showed that the impedance of equivalent circuit calculated by this algorithm was the same as experimental result in the whole EMC frequency. In order to further confirm the validity of ACA, PSPICE circuit simulation was implemented to simulate the spectrum of common mode Electromagnetic Interference (EMI) of equivalent circuit. The simulation result accords well with the experiment result re-ceived by EMI receiver. So it sufficiently demonstrated correctness of ACA in the analysis of high frequency equivalent circuit.展开更多
文摘The Electromagnetic Compatibility (EMC) of direct current (DC) motor windings is a system model which is used to reflect the functional characters of the system in the whole EMC specified frequency (150 KHz ~ 30 MHz). For most motor designing process, it is always used to evaluate the inductance of windings in lower or working frequency;however, when analyzing the conducted interference, it is necessary to take some pa-rameters in high frequency into account in building up the EMC model, such as the noticeable capacitance distributed among the windings or between windings and shells. Past research neglected the common-mode current generated by the high frequency interference within motor bearings coupled with shells, since the parasitic capacitance of rotor core comes from armature windings supplied sufficient paths. In EMC model-ing process for DC motor problem, first, test the impedance of windings by experiments;then, generate the equivalent circuit with overall parameters. At present, it is a difficulty that how to choose the parameters. Most researchers preferred to adopt analytical calculation results, however, it could not reflect the essence of the model since it requires many simplification. Based on this point, this paper adopted ant colony algorithm (ACA) with positive feedback to intelligently search and globally optimize the parameters of equivalent cir-cuit. Simulation result showed that the impedance of equivalent circuit calculated by this algorithm was the same as experimental result in the whole EMC frequency. In order to further confirm the validity of ACA, PSPICE circuit simulation was implemented to simulate the spectrum of common mode Electromagnetic Interference (EMI) of equivalent circuit. The simulation result accords well with the experiment result re-ceived by EMI receiver. So it sufficiently demonstrated correctness of ACA in the analysis of high frequency equivalent circuit.