Objective To investigate the epidemiological features in children after the coronavirus disease 2019(COVID-19)pandemic.Methods This study collected throat swabs and serum samples from hospitalized pediatric patients o...Objective To investigate the epidemiological features in children after the coronavirus disease 2019(COVID-19)pandemic.Methods This study collected throat swabs and serum samples from hospitalized pediatric patients of Renmin Hospital of Wuhan University,Wuhan,Hubei province,China before and after the COVID-19 pandemic.Respiratory infected pathogens[adenovirus(ADV),influenza virus A/B(Flu A/B),parainfluenza virus 1/2/3(PIV1/2/3),respiratory syncytial virus(RSV),Mycoplasma pneumoniae(MP),and Chlamydia pneumoniae(CP)]were detected.The pathogens,age,and gender were used to analyze the epidemiological features in children after the COVID-19 pandemic.Results The pathogen detection rate was significantly higher in females than in males(P<0.05),and the infection of PIV1 and MP was mainly manifested.After the COVID-19 pandemic,PIV1,PIV3,RSV,and MP had statistically different detection rates among the age groups(P<0.05),and was mainly detected in patients aged 0–6 years,0–3 years,0–3 years,and 1–6 years,respectively.When comparing before the COVID-19 pandemic,the total detection rate of common respiratory pathogens was lower(P<0.05).Except for the increase in the detection rate of PIV1 and CP,the infection rate of other pathogens had almost decreased.Conclusion The prevention and control measures for the COVID-19 pandemic effectively changed the epidemiological features of common respiratory tract infectious diseases in pediatric children.展开更多
Obligate biotrophic fungi cause serious and widespread diseases of crop plants, but are challenging to investigate because they cannot be cultured in vitro. The two economically important groups of biotrophic fungi pa...Obligate biotrophic fungi cause serious and widespread diseases of crop plants, but are challenging to investigate because they cannot be cultured in vitro. The two economically important groups of biotrophic fungi parasitizing wheat are the rust and powdery mildew pathogens, but their obligate biotrophic lifestyles and pathogenicity mechanisms are not well understood at the molecular level. With the advent of next generation sequencing technology, increasing numbers of pathogen genomes are becoming available. Research in plant pathology has entered a new genomics era. This review summarizes recent progress in understanding the biology and pathogenesis of biotrophic fungal pathogens attacking wheat based on pathogen genomics. We particularly focus on the three wheat rust and the powdery mildew fungi in regard to genome sequencing, avirulence gene cloning, effector discovery, and pathogenomics. We predict that coordinated study of both wheat and its pathogens should reveal new insights in biotrophic adaptation, pathogenicity mechanisms,and population dynamics of these fungi that will assist in development of new strategies for breeding wheat varieties with durable resistance.展开更多
基金supported by grants from the Fundamental Research Funds for the Central Universities(No.2042022kf1215)the Special Funds for Innovation in Scientific Research Program of Zhongshan(No.2020AG024)+4 种基金Chinese Foundation for Hepatitis Prevention and Control:TianQing Liver Disease Research Fund Subject(No.TGQB20210109)the Open Funds of Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province(No.KFJJ-202005 and No.KFJJ-201907)the Open Research Program of the State Key Laboratory of Virology of China(No.2021KF002 and No.2021KF006)the Natural Science Foundation of Hubei Province(No.2020CFB619)Wuhan Municipal Health Research Foundation(No.WX21Z36).
文摘Objective To investigate the epidemiological features in children after the coronavirus disease 2019(COVID-19)pandemic.Methods This study collected throat swabs and serum samples from hospitalized pediatric patients of Renmin Hospital of Wuhan University,Wuhan,Hubei province,China before and after the COVID-19 pandemic.Respiratory infected pathogens[adenovirus(ADV),influenza virus A/B(Flu A/B),parainfluenza virus 1/2/3(PIV1/2/3),respiratory syncytial virus(RSV),Mycoplasma pneumoniae(MP),and Chlamydia pneumoniae(CP)]were detected.The pathogens,age,and gender were used to analyze the epidemiological features in children after the COVID-19 pandemic.Results The pathogen detection rate was significantly higher in females than in males(P<0.05),and the infection of PIV1 and MP was mainly manifested.After the COVID-19 pandemic,PIV1,PIV3,RSV,and MP had statistically different detection rates among the age groups(P<0.05),and was mainly detected in patients aged 0–6 years,0–3 years,0–3 years,and 1–6 years,respectively.When comparing before the COVID-19 pandemic,the total detection rate of common respiratory pathogens was lower(P<0.05).Except for the increase in the detection rate of PIV1 and CP,the infection rate of other pathogens had almost decreased.Conclusion The prevention and control measures for the COVID-19 pandemic effectively changed the epidemiological features of common respiratory tract infectious diseases in pediatric children.
基金supported by the National Basic Research Program of China (2013CB127700)National Natural ScienceFoundation of China (31371882, 31401693)the 111 Project of the Ministry of Education of China (B07049)
文摘Obligate biotrophic fungi cause serious and widespread diseases of crop plants, but are challenging to investigate because they cannot be cultured in vitro. The two economically important groups of biotrophic fungi parasitizing wheat are the rust and powdery mildew pathogens, but their obligate biotrophic lifestyles and pathogenicity mechanisms are not well understood at the molecular level. With the advent of next generation sequencing technology, increasing numbers of pathogen genomes are becoming available. Research in plant pathology has entered a new genomics era. This review summarizes recent progress in understanding the biology and pathogenesis of biotrophic fungal pathogens attacking wheat based on pathogen genomics. We particularly focus on the three wheat rust and the powdery mildew fungi in regard to genome sequencing, avirulence gene cloning, effector discovery, and pathogenomics. We predict that coordinated study of both wheat and its pathogens should reveal new insights in biotrophic adaptation, pathogenicity mechanisms,and population dynamics of these fungi that will assist in development of new strategies for breeding wheat varieties with durable resistance.