Borehole acoustic reflection logging can provide high resolution images of nearborehole geological structure. However, the conventional seismic migration and imaging methods are not effective because the reflected wav...Borehole acoustic reflection logging can provide high resolution images of nearborehole geological structure. However, the conventional seismic migration and imaging methods are not effective because the reflected waves are interfered with the dominant borehole-guided modes and there are only eight receiving channels per shot available for stacking. In this paper, we apply an equivalent offset migration method based on wave scattering theory to process the acoustic reflection imaging log data from both numerical modeling and recorded field data. The result shows that, compared with the routine post-stack depth migration method, the equivalent offset migration method results in higher stack fold and is more effective for near-borehole structural imaging with low SNR acoustic reflection log data.展开更多
Goafs are threats to safe mining.Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images.Hence,accurate detection of goafs has become an important problem...Goafs are threats to safe mining.Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images.Hence,accurate detection of goafs has become an important problem,to be solved with a sense of urgency.Based on scattering theory,we used an equivalent offset method to extract Common Scattering Point gathers,in order to analyze different scattering wave characteristics between Common Scattering Point and Common Mid Point gathers and to compare stack and migration imaging effects.Our research results show that the scattering wave imaging method is more efficient than the conventional imaging method and is therefore a more effective imaging method for detecting goafs and other complex geological bodies.It has important implications for safe mining procedures and infrastructures.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50674098)the 863 Program (Grant No.2006AA06Z207 & 2006AA06Z213)the 973 Program (Grant No.2007CB209601)
文摘Borehole acoustic reflection logging can provide high resolution images of nearborehole geological structure. However, the conventional seismic migration and imaging methods are not effective because the reflected waves are interfered with the dominant borehole-guided modes and there are only eight receiving channels per shot available for stacking. In this paper, we apply an equivalent offset migration method based on wave scattering theory to process the acoustic reflection imaging log data from both numerical modeling and recorded field data. The result shows that, compared with the routine post-stack depth migration method, the equivalent offset migration method results in higher stack fold and is more effective for near-borehole structural imaging with low SNR acoustic reflection log data.
基金Financial support for this work,provided by the Key National Project(No.2008ZX05035)the State Science and Technology Support Program,the National Natural Science Foundation of China (Nos.40574057,40874054,40804026)the State Basic Research and Development Program of China(No.2007CB209406)
文摘Goafs are threats to safe mining.Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images.Hence,accurate detection of goafs has become an important problem,to be solved with a sense of urgency.Based on scattering theory,we used an equivalent offset method to extract Common Scattering Point gathers,in order to analyze different scattering wave characteristics between Common Scattering Point and Common Mid Point gathers and to compare stack and migration imaging effects.Our research results show that the scattering wave imaging method is more efficient than the conventional imaging method and is therefore a more effective imaging method for detecting goafs and other complex geological bodies.It has important implications for safe mining procedures and infrastructures.