The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-prod...The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-producing bacteria were newly isolated from the intestine of wild common carp (</span><span style="font-family:Verdana;"><i>Cyprinus carpio</i></span><span style="font-family:Verdana;"> L.), and identified belonging to the genera of </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Klebsiella</span></i><span style="font-family:Verdana;"> based on analysis of the 16S rDNA gene sequence and examination of the physiological and biochemical characteristics. All the isolates inherently owned the ability to metabolize xylose especially the cotton stalk hydrolysate for hydrogen production with hydrogen yield (HY) higher than 100 mL</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span><span></span><span></span><span style="font-family:""><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. In particular, two isolates, WL1306 and WL1305 obtained higher HY, hydrogen production rate (HPR), and hydrogen production potential (HPP) using cotton stalk hydrolysate as sugar substrate than the mixed sugar of glucose & xylose, which obtained the HY of 249.5 ± 29.0, 397.0 ± 36.7 mL</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPR of 10.4 ± 1.2, 16.5 ± 1.5 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">h</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPP of 19.5 ± 2.3, 31.0 ± 2.8 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">g</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><sub><span style="font-family:Verdana;">sugar</span></sub><span style="font-family:Verdana;">, separately. The generation of soluble metabolites, such as the lactate, formate, acetate, succinate and ethanol reflected the mixed acid fermentation properties of the hydrogen production pathway.展开更多
A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vatio...A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vation and village common forest-managed by indigenous community was at Madhya Para in Rangamati district and the second pair of sites with the shifting cultivated land and village common forest at Ampu Para in Bandarban district of Chittagong Hill Tracts. At both the locations with two different land uses, soil textures in surface (0?10 cm) and sub-surface (10?20 cm) soils varied from sandy loam to sandy clay loam. Soil pH and moisture content were lower in shifting cultivated land com-pared to village common forest. The results also showed that both fungal and bacterial population in surface and subsurface soils was significantly (p ≤ 0.05) lower, in most cases, in shifting cultivated land compared to village common forest at both Madhya Para and Ampu Para. At Ranga-mati and Bandarban in shifting cultivated lands, Colletrotrichum and Fusarium fungi were absent and all the bacterial genus viz. Coccus, Bacillus and Streptococcus common in two different locations with dif-ferent land uses. Common identified fungi at both the land uses and locations were Aspergillus, Rhizopus, Trichoderma and Penicillium. Further study can be done on the other soil biota to understand the extent of environmental deterioration due to shifting cultivation.展开更多
文摘The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-producing bacteria were newly isolated from the intestine of wild common carp (</span><span style="font-family:Verdana;"><i>Cyprinus carpio</i></span><span style="font-family:Verdana;"> L.), and identified belonging to the genera of </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Klebsiella</span></i><span style="font-family:Verdana;"> based on analysis of the 16S rDNA gene sequence and examination of the physiological and biochemical characteristics. All the isolates inherently owned the ability to metabolize xylose especially the cotton stalk hydrolysate for hydrogen production with hydrogen yield (HY) higher than 100 mL</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span><span></span><span></span><span style="font-family:""><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. In particular, two isolates, WL1306 and WL1305 obtained higher HY, hydrogen production rate (HPR), and hydrogen production potential (HPP) using cotton stalk hydrolysate as sugar substrate than the mixed sugar of glucose & xylose, which obtained the HY of 249.5 ± 29.0, 397.0 ± 36.7 mL</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPR of 10.4 ± 1.2, 16.5 ± 1.5 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">h</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPP of 19.5 ± 2.3, 31.0 ± 2.8 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">g</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><sub><span style="font-family:Verdana;">sugar</span></sub><span style="font-family:Verdana;">, separately. The generation of soluble metabolites, such as the lactate, formate, acetate, succinate and ethanol reflected the mixed acid fermentation properties of the hydrogen production pathway.
基金This study was supported by United States Depart-ment of Agriculture (USDA), Grant No.: BG-ARS-123
文摘A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vation and village common forest-managed by indigenous community was at Madhya Para in Rangamati district and the second pair of sites with the shifting cultivated land and village common forest at Ampu Para in Bandarban district of Chittagong Hill Tracts. At both the locations with two different land uses, soil textures in surface (0?10 cm) and sub-surface (10?20 cm) soils varied from sandy loam to sandy clay loam. Soil pH and moisture content were lower in shifting cultivated land com-pared to village common forest. The results also showed that both fungal and bacterial population in surface and subsurface soils was significantly (p ≤ 0.05) lower, in most cases, in shifting cultivated land compared to village common forest at both Madhya Para and Ampu Para. At Ranga-mati and Bandarban in shifting cultivated lands, Colletrotrichum and Fusarium fungi were absent and all the bacterial genus viz. Coccus, Bacillus and Streptococcus common in two different locations with dif-ferent land uses. Common identified fungi at both the land uses and locations were Aspergillus, Rhizopus, Trichoderma and Penicillium. Further study can be done on the other soil biota to understand the extent of environmental deterioration due to shifting cultivation.