An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom...An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.展开更多
The yield of castor is influenced by the type of inflorescence and the proportion of female flowers.However,there are few studies on the genetic mechanism involved in the development and differentiation of castor infl...The yield of castor is influenced by the type of inflorescence and the proportion of female flowers.However,there are few studies on the genetic mechanism involved in the development and differentiation of castor inflorescences.In this study,we performed transcriptomic analyses of three different phenotypes of inflorescences at the five-leaf stage.In comparison to the MI(complete pistil without willow leaves),290 and 89 differentially expressed genes(DEGs)were found in the SFI(complete pistil with willow leaves)and the BI(monoecious inflorescence),respectively.Among the DEGs,104 and 88 were upregulated in the SFI and BI,respectively,compared to the MI.In addition,186 DEGs and 1 DEG were downregulated in the SFI and BI compared to the MI.Moreover,we conducted GO and KEGG enrichment analyses of the DEGs.In comparison to the MI,the SFI and BI exhibited the enrichment of functional branches in DEGs,specifically in pollen wall assembly,pollen development,and cellular component assembly involved in morphogenesis.In our study,RADL5 showed low expression levels between SFI-vs.-MI types.In addition,we found that the expression of NAC in the SFI differed from that in MI and BI,and some genes related to hormonal signaling changed their expression levels during inflorescence differentiation.These results reveal the genetic mechanism of sex genotypes in castor,which will not only guide researchers in the breeding of castor but also provide a reference for genetic research on other flowering plants.展开更多
Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high...Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development.展开更多
Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a po...Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a potential difference.However,the current SED process is limited by conventional commercial monovalent cation permselective membranes(MCPMs).This study systematically investigates the use of an independently developed MCPM in the SED process for acid recovery.Various factors such as current density,volume ratio,initial ion concentration,and waste acid systems are considered.The independently developed MCPM offers several advantages over the commercial monovalent selective cation-exchange membrane(CIMS),including higher recovered acid concentration,better ion flux ratio,improved acid recovery efficiency,increased recovered acid purity,and higher current efficiency.The SED process with the MCPM achieves a recovered acid of 95.9%and a concentration of 2.3 mol·L^(–1) in the HCl/FeCl_(2) system,when a current density of 20 mA·cm^(-2) and a volume ratio of 1:2 are applied.Similarly,in the H_(2)SO_(4)/FeSO_(4) system,a purity of over 99%and a concentration of 2.1 mol·L^(–1) can be achieved in the recovered acid.This study thoroughly examines the impact of operation conditions on acid recovery performance in the SED process.The independently developed MCPM demonstrates outstanding acid recovery performance,highlighting its potential for future commercial utilization.展开更多
The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synth...The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.展开更多
Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.U...Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.Unfortunately,investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment.Here,the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry,in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques.Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction.When comparing the different cation electrolyte systems at a given potential,the frequency of the interfacial water peak increases in the specified order:Li+<Na^(+)<K^(+)<Ca^(2+)<Sr^(2+).The structure of interfacial water was optimized by adjusting the radius,valence,and concentration of cation to form the two-H down structure.This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance.Therefore,local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.展开更多
Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na...Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes.展开更多
The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficien...The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested.展开更多
Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh bein...Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh being expensive,only a few studies have examined its electrocatalytic mass activity.Herein,surface-limited cation exchange and electrochemical activation processes are designed to remarkably enhance the mass activity of Rh.Rh atoms were readily replaced at the Ni sites on the surface of NiOOH electrodes by cation exchange,and the resulting RhOOH compounds were activated by the electrochemical reduction process.The cation exchange-derived Rh catalysts exhibited particle sizes not exceeding 2 nm without agglomeration,indicating a decrease in the number of inactive inner Rh atoms.Consequently,an improved mass activity of 30 A mg_(Rh)^(-1)was achieved at 0.4 V versus reversible hydrogen electrode.Furthermore,the two-electrode system employing the same CE-derived Rh electrodes achieved overall hydrazine splitting over 36 h at a stable low voltage.The proposed surface-limited CE process is an effective method for reducing inactive atoms of expensive noble metal catalysts.展开更多
with the development of 5G,the future wireless communication network tends to be more and more intelligent.In the face of new service de-mands of communication in the future such as super-heterogeneous network,multipl...with the development of 5G,the future wireless communication network tends to be more and more intelligent.In the face of new service de-mands of communication in the future such as super-heterogeneous network,multiple communication sce-narios,large number of antenna elements and large bandwidth,new theories and technologies of intelli-gent communication have been widely studied,among which Deep Learning(DL)is a powerful technology in artificial intelligence(AI).It can be trained to con-tinuously learn to update the optimal parameters.This paper reviews the latest research progress of DL in in-telligent communication,and emphatically introduces five scenarios including Cognitive Radio(CR),Edge Computing(EC),Channel Measurement(CM),End to end Encoder/Decoder(EED)and Visible Light Com-munication(VLC).The prospect and challenges of further research and development in the future are also discussed.展开更多
Purpose:To investigate the effect of apigenin on gap junctional intercellular communication (GJIC) in human Tenon's capsule fibroblasts (HTFs) and its underlying mechanism. Methods:After a 48 h treatment of cultur...Purpose:To investigate the effect of apigenin on gap junctional intercellular communication (GJIC) in human Tenon's capsule fibroblasts (HTFs) and its underlying mechanism. Methods:After a 48 h treatment of cultured HTFs with apigenin.(80 μmol/L),the GJIC was detected by a scrape-loading/dye transfer technique with Lucifer yellow dye and rhodamine (Rh) dextran. The coupling index represents a quantification of GJIC where a high coupling index is associated with a greater number of cells demonstrating cell-cell communication through gap junction channels.The changes in connexin 43 (Cx43) distribution and the expression of Cx43 at the protein and mRNA levels were statistically compared between the two groups by means of immunocytochemistry, western blotting,and real-time polymerase chain reaction (PCR). Results:The functioning of GJIC in the HTFs was significantly enhanced after 48 hours by apigenin treatment when compared with the control cells. In the apigenin group, the intercellular dye transfer grade was above 9, while this value was only grade 3-4 in the control group. The coupling index was significantly increased up to 9.205±0.3621 in the apigenin group,compared with 5.1775 ±0.3177 in the control group (F=279.581, P=0.000). The expression of Cx43 at the protein and mRNA levels was significantly up-regulated in the apigenin group compared with the control group. Conclusion:Apigenin can significantly enhance the function of GJIC in HTFs by up-regulating the expression of Cx43 at both the protein and mRNA levels,suggesting that the enhancement of GJIC in HTFs by apigenin probably acts as an important mechanism underlying the inhibitory effect of apigenin on HTF proliferation.展开更多
In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for s...In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for such algorithm over undirected connected graphs is provided. Furthermore, a simple yet generic criterion is also presented to guarantee synchronized oscillatory motions in coupled harmonic oscillators. Subsequently, the simulation results are worked out to demonstrate the efficiency and feasibility of the theoretical results.展开更多
Light-harvesting chlorophyll a/b-binding (LHC) proteins are a group of nuclear-encoded thylakoid proteins that play a key role in plant photosynthesis and are widely involved in light harvesting, energy transfer to ...Light-harvesting chlorophyll a/b-binding (LHC) proteins are a group of nuclear-encoded thylakoid proteins that play a key role in plant photosynthesis and are widely involved in light harvesting, energy transfer to the reaction center, maintenance of thylakoid membrane structure, photoprotection and response to en- vironmental conditions, etc. Although/dw supergene family is well characterized in model plants such as Arabidopsis, rice and poplar, little information is available in castor bean (Ricinus communis L. ). In this study, a genome-wide search was carried out for the first time to identify castor bean L/w genes and analyze the gene structures, biochemical properties, evolutionary relationships and expression characteristics based on the published data of castor bean genome and ESTs. According to the results, a total of 28 Rclhcs genes representing 13 gene families ( l_hca , l_hcb , Elip , Ohpl , Ohp2 , SEP1, SEP2 , SEP3 , SEP4 , SEP5 , PsbS , Rieske and FCII) and 25 subgene families were identified in castor bean genome; to be specific, 25 and 5 genes were found to have corresponding ESTs in NCBI and have al- ternative splicing isoforlns, respectively. These RcLhcs contain 0 to 9 introns and distribute on 26 of the 25 878 released scaffolds. All RcLhcs genes were found to be expressed in all examined tissues, i.e. leaf, flower, II/III stage endosperm, V/VI stage endosperm and seed, with the highest expression level in leaf tissue.展开更多
AIM: To investigate and test a causal model derivedfrom previous meta-analytic data of health provider be-haviors and patient satisfaction.METHODS: A literature search was conducted forrelevant manuscripts that met ...AIM: To investigate and test a causal model derivedfrom previous meta-analytic data of health provider be-haviors and patient satisfaction.METHODS: A literature search was conducted forrelevant manuscripts that met the following criteria:Reported an analysis of provider-patient interaction inthe context of an oncology interview; the study hadto measure at least two of the variables of interest tothe model (provider activity, provider patient-centeredcommunication, provider facilitative communication,patient activity, patient involvement, and patient satis-faction or reduced anxiety); and the information had tobe reported in a manner that permitted the calculationof a zero-order correlation between at least two of thevariables under consideration. Data were transformedinto correlation coefficients and compiled to producethe correlation matrix used for data analysis. The test of the causal model is a comparison of the expected correlation matrix generated using an Ordinary Least Squares method of estimation. The expected matrix iscompared to the actual matrix of zero order correlation coeffcients. A model is considered a possible ft if the level of deviation is less than expected due to random sampling error as measured by a chi-square statistic. The signifcance of the path coeffcients was tested us-ing a z test. Lastly, the Sobel test provides a test of the level of mediation provided by a variable and provides an estimate of the level of mediation for each connec-tion. Such a test is warranted in models with multiple paths.RESULTS: A test of the original model indicated a lack of ft with the summary data. The largest discrepancy in the model was between the patient satisfaction and the provider patient-centered utterances. The observed correlation was far larger than expected given a medi-ated relationship. The test of a modifed model was un-dertaken to determine possible ft. The corrected model provides a fit to within tolerance as evaluated by the test statistic, χ2 (8, average n = 342) = 10.22. Each of the path coefficients for the model reveals that each one can be considered signifcant, P 〈 0.05. The Sobel test examining the impact of the mediating variables demonstrated that patient involvement is a signifcantmediator in the model, Sobel statistic = 3.56, P 〈 0.05. Patient active was also demonstrated to be a signifcant mediator in the model, Sobel statistic = 4.21, P 〈 0.05. The statistics indicate that patient behavior mediates the relationship between provider behavior and patient satisfaction with the interaction.CONCLUSION: The results demonstrate empirical support for the importance of patient-centered care and satisfy the need for empirical casual support of provider-patient behaviors on health outcomes.展开更多
Under the background of intelligent transportation application, QoS for various services is different in wireless com-munication. Based on the MAC layer protocol, this paper analyzes the QoS in IEEE 802.11 MAC protoco...Under the background of intelligent transportation application, QoS for various services is different in wireless com-munication. Based on the MAC layer protocol, this paper analyzes the QoS in IEEE 802.11 MAC protocol framework, and proposes a new design of a Differentiation Enhanced Adaptive EDCA (enhanced distribution channel access) approach. The proposed approach adjusts the window zooming dynamically according to the collision rate in sending data frames, makes random offset, and further distinguishes the competition parameters of the data frames that have the same priority, so as to reduce the conflict among the data frames, and improve the channel utilization. Experiments with different service cases were conducted. The simulation results show that: comparing with the conventional EDCA method, the proposed approach can ensure that high priority services are sent with priority, and the overall QoS is highly improved.展开更多
We analyzed a novel cationic collector using chemical plant byproducts,such as cetyltrimethylammonium bromide(CTAB)and dibutyl phthalate(DBP).Our aim is to establish a highly effective and economical process for the r...We analyzed a novel cationic collector using chemical plant byproducts,such as cetyltrimethylammonium bromide(CTAB)and dibutyl phthalate(DBP).Our aim is to establish a highly effective and economical process for the removal of quartz from collophane.A microflotation test with a 25 mg·L^(−1)collector at pH value of 6-10 demonstrates a considerable difference in the floatability of pure quartz and fluorapatite.Flotation tests for a collophane sample subjected to the first reverse flotation for magnesium removal demonstrates that a rough flotation process(using a 0.4 kg·t−1 new collector at pH=6)results in a collophane concentrate with 29.33wt%P_(2)O_(5)grade and 12.66wt%SiO2 at a 79.69wt%P_(2)O_(5)recovery,providing desirable results.Mechanism studies using Fourier transform infrared spectroscopy,zeta potential,and contact angle measurements show that the adsorption capacity of the new collector for quartz is higher than that for fluorapatite.The synergistic effect of DBP increases the difference in hydrophobicity between quartz and fluorapatite.The maximum defoaming rate of the novel cationic collector reaches 142.8 mL·min−1.This is considerably higher than that of a conventional cationic collector.展开更多
Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents...Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords.An efficient classification algorithm for retrieving documents based on keyword words is required.The traditional algorithm performs less because it never considers words’polysemy and the relationship between bag-of-words in keywords.To solve the above problem,Semantic Featured Convolution Neural Networks(SF-CNN)is proposed to obtain the key relationships among the searching keywords and build a structure for matching the words for retrieving correct text documents.The proposed SF-CNN is based on deep semantic-based bag-of-word representation for document retrieval.Traditional deep learning methods such as Convolutional Neural Network and Recurrent Neural Network never use semantic representation for bag-of-words.The experiment is performed with different document datasets for evaluating the performance of the proposed SF-CNN method.SF-CNN classifies the documents with an accuracy of 94%than the traditional algorithms.展开更多
High-performance lithium-ion batteries(LIB)are important in powering emerging technologies.Cathodes are regarded as the bottleneck of increasing battery energy density,among which layered oxides are the most promising...High-performance lithium-ion batteries(LIB)are important in powering emerging technologies.Cathodes are regarded as the bottleneck of increasing battery energy density,among which layered oxides are the most promising candidates for LIB.However,a limitation with layered oxides cathodes is the transition metal and Li site mixing,which significantly impacts battery capacity and cycling stability.Despite recent research on Li/Ni mixing,there is a lack of comprehensive understanding of the origin of cation mixing between the transition metal and Li;therefore,practical means to address it.Here,a critical review of cation mixing in layered cathodes has been provided,emphasising the understanding of cation mixing mechanisms and their impact on cathode material design.We list and compare advanced characterisation techniques to detect cation mixing in the material structure;examine methods to regulate the degree of cation mixing in layered oxides to boost battery capacity and cycling performance,and critically assess how these can be applied practically.An appraisal of future research directions,including superexchange interaction to stabilise structures and boost capacity retention has also been concluded.Findings will be of immediate benefit in the design of layered cathodes for high-performance rechargeable LIB and,therefore,of interest to researchers and manufacturers.展开更多
The Republic of Azerbaijan, is a country in the south Caucasus having continental influenced climate with warm summer and mild cold, dry winters. Relating to its climate this region has a rich and very interesting veg...The Republic of Azerbaijan, is a country in the south Caucasus having continental influenced climate with warm summer and mild cold, dry winters. Relating to its climate this region has a rich and very interesting vegetation cover. In presented article the vegetation communities with the presence of Juniperus communis L. species and subspecies have been described.展开更多
The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disast...The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).展开更多
基金financial support from Singapore Ministry of Education under its AcRF Tier 2 Grant No MOE-T2EP10123-0001Singapore National Research Foundation Investigatorship under Grant No NRF-NRFI08-2022-0009Academic Excellence Foundation of BUAA for PhD Students(applicant:Hongfei Xu).
文摘An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.
基金the following agencies:the Natural Science Foundation of Jilin Province(YDZJ202201ZYTS453)the Scientific Research Project of the Jilin Provincial Department of Education(JJKH20220010KJ)+6 种基金the Program for Innovative Research Team of Baicheng Normal University,the National Natural Science Foundation of China(31860071)the Inner Mongolia Autonomous Region Natural Science Foundation Project(2021MS03008)the Inner Mongolia Autonomous Region Grassland Talent Innovation Team(2022)the 2022 Basic Scientific Research Business Cost Project of Universities Directly under the Autonomous Region(237)the Open Fund Project of Inner Mongolia Castor Industry Collaborative Innovation Center(MDK2021011,MDK2022014,MDK2022008,MDK2021008,MDK2022009,MDK2023003)Fundamental Research Funds for Universities Directly under the Autonomous Region in 2023 of Inner Mongolia University for Nationalities(225,227,243,244)New Agricultural Science Research and Reform Practice Project of the Ministry of Education(2020114)。
文摘The yield of castor is influenced by the type of inflorescence and the proportion of female flowers.However,there are few studies on the genetic mechanism involved in the development and differentiation of castor inflorescences.In this study,we performed transcriptomic analyses of three different phenotypes of inflorescences at the five-leaf stage.In comparison to the MI(complete pistil without willow leaves),290 and 89 differentially expressed genes(DEGs)were found in the SFI(complete pistil with willow leaves)and the BI(monoecious inflorescence),respectively.Among the DEGs,104 and 88 were upregulated in the SFI and BI,respectively,compared to the MI.In addition,186 DEGs and 1 DEG were downregulated in the SFI and BI compared to the MI.Moreover,we conducted GO and KEGG enrichment analyses of the DEGs.In comparison to the MI,the SFI and BI exhibited the enrichment of functional branches in DEGs,specifically in pollen wall assembly,pollen development,and cellular component assembly involved in morphogenesis.In our study,RADL5 showed low expression levels between SFI-vs.-MI types.In addition,we found that the expression of NAC in the SFI differed from that in MI and BI,and some genes related to hormonal signaling changed their expression levels during inflorescence differentiation.These results reveal the genetic mechanism of sex genotypes in castor,which will not only guide researchers in the breeding of castor but also provide a reference for genetic research on other flowering plants.
文摘Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development.
基金supported by the National Key Research and Development Program of China(2022YFB3805100)National Natural Science Foundation of China(22222812 and 22178330)+1 种基金Anhui Provincial Key Research and Development Plan(202104b11020030)Major Science and Technology Innovation Projects in Shandong Province(2022CXGC020415).
文摘Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a potential difference.However,the current SED process is limited by conventional commercial monovalent cation permselective membranes(MCPMs).This study systematically investigates the use of an independently developed MCPM in the SED process for acid recovery.Various factors such as current density,volume ratio,initial ion concentration,and waste acid systems are considered.The independently developed MCPM offers several advantages over the commercial monovalent selective cation-exchange membrane(CIMS),including higher recovered acid concentration,better ion flux ratio,improved acid recovery efficiency,increased recovered acid purity,and higher current efficiency.The SED process with the MCPM achieves a recovered acid of 95.9%and a concentration of 2.3 mol·L^(–1) in the HCl/FeCl_(2) system,when a current density of 20 mA·cm^(-2) and a volume ratio of 1:2 are applied.Similarly,in the H_(2)SO_(4)/FeSO_(4) system,a purity of over 99%and a concentration of 2.1 mol·L^(–1) can be achieved in the recovered acid.This study thoroughly examines the impact of operation conditions on acid recovery performance in the SED process.The independently developed MCPM demonstrates outstanding acid recovery performance,highlighting its potential for future commercial utilization.
基金Funded by the National Natural Science Foundation of China(No.21865017)。
文摘The reactive diluent prepared by siloxane modified Trimethylene oxide can improve the performance of the UV curing system.Therefore,1,7-bis[(3-ethyl-3-methoxyoxacylobutane)propyl]octadecylosiloxane(BEMOPOMTS)was synthesized from diethyl carbonate,trimethylopropanes,allyl bromide,and 1,1,3,3,5,5,7,7-octadecylosiloxane as the main raw materials.BEMOPOMTS can be used as reactive diluents in the field of cationic UV curing.It has good thermal stability,and the addition of BEMOPOMTS significantly improves the tensile strength and elongation at break of epoxy resin.Compared with the pure epoxy resin,adding 20%BEMOPOMTS increased the elastic modulus by 25%to 677 MPa.
基金the National Key Research and Development Program of China(2019YFA0705400)the National Natural Science Foundation of China(T2293692,21925404,22021001,21991151,and 22002036)+1 种基金the Natural Science Foundation of Fujian Province of China(2021J06001)the National Natural Science Foundation of Henan province(232300421081).
文摘Interfacial water molecules are the most important participants in the hydrogen evolution reaction(HER).Hence,understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism.Unfortunately,investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment.Here,the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry,in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques.Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction.When comparing the different cation electrolyte systems at a given potential,the frequency of the interfacial water peak increases in the specified order:Li+<Na^(+)<K^(+)<Ca^(2+)<Sr^(2+).The structure of interfacial water was optimized by adjusting the radius,valence,and concentration of cation to form the two-H down structure.This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance.Therefore,local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.
基金funding supports from the National Key R&D Program of China(Grant Nos.2022YFB2404400 and 2019YFA0308500)Beijing Natural Science Foundation(Z190010)National Natural Science Foundation of China(Grant Nos.51991344,52025025,52072400,and 52002394)。
文摘Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes.
文摘The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry ofEducation(2021R1A2C3011870 and 2019R1A6A1A03033215)the Korea Research Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2020H1D3A1A04081323)
文摘Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater.Despite Rh being expensive,only a few studies have examined its electrocatalytic mass activity.Herein,surface-limited cation exchange and electrochemical activation processes are designed to remarkably enhance the mass activity of Rh.Rh atoms were readily replaced at the Ni sites on the surface of NiOOH electrodes by cation exchange,and the resulting RhOOH compounds were activated by the electrochemical reduction process.The cation exchange-derived Rh catalysts exhibited particle sizes not exceeding 2 nm without agglomeration,indicating a decrease in the number of inactive inner Rh atoms.Consequently,an improved mass activity of 30 A mg_(Rh)^(-1)was achieved at 0.4 V versus reversible hydrogen electrode.Furthermore,the two-electrode system employing the same CE-derived Rh electrodes achieved overall hydrazine splitting over 36 h at a stable low voltage.The proposed surface-limited CE process is an effective method for reducing inactive atoms of expensive noble metal catalysts.
基金the National Nat-ural Science Foundation of China under Grant No.62061039Postgraduate Innovation Project of Ningxia University No.JIP20210076Key project of Ningxia Natural Science Foundation No.2020AAC02006.
文摘with the development of 5G,the future wireless communication network tends to be more and more intelligent.In the face of new service de-mands of communication in the future such as super-heterogeneous network,multiple communication sce-narios,large number of antenna elements and large bandwidth,new theories and technologies of intelli-gent communication have been widely studied,among which Deep Learning(DL)is a powerful technology in artificial intelligence(AI).It can be trained to con-tinuously learn to update the optimal parameters.This paper reviews the latest research progress of DL in in-telligent communication,and emphatically introduces five scenarios including Cognitive Radio(CR),Edge Computing(EC),Channel Measurement(CM),End to end Encoder/Decoder(EED)and Visible Light Com-munication(VLC).The prospect and challenges of further research and development in the future are also discussed.
基金supported by Shandong Provincial Natural Science Foundation Project (No.ZR2010HM015)
文摘Purpose:To investigate the effect of apigenin on gap junctional intercellular communication (GJIC) in human Tenon's capsule fibroblasts (HTFs) and its underlying mechanism. Methods:After a 48 h treatment of cultured HTFs with apigenin.(80 μmol/L),the GJIC was detected by a scrape-loading/dye transfer technique with Lucifer yellow dye and rhodamine (Rh) dextran. The coupling index represents a quantification of GJIC where a high coupling index is associated with a greater number of cells demonstrating cell-cell communication through gap junction channels.The changes in connexin 43 (Cx43) distribution and the expression of Cx43 at the protein and mRNA levels were statistically compared between the two groups by means of immunocytochemistry, western blotting,and real-time polymerase chain reaction (PCR). Results:The functioning of GJIC in the HTFs was significantly enhanced after 48 hours by apigenin treatment when compared with the control cells. In the apigenin group, the intercellular dye transfer grade was above 9, while this value was only grade 3-4 in the control group. The coupling index was significantly increased up to 9.205±0.3621 in the apigenin group,compared with 5.1775 ±0.3177 in the control group (F=279.581, P=0.000). The expression of Cx43 at the protein and mRNA levels was significantly up-regulated in the apigenin group compared with the control group. Conclusion:Apigenin can significantly enhance the function of GJIC in HTFs by up-regulating the expression of Cx43 at both the protein and mRNA levels,suggesting that the enhancement of GJIC in HTFs by apigenin probably acts as an important mechanism underlying the inhibitory effect of apigenin on HTF proliferation.
基金partially supported by the National Science Foundation of China(11272791,61364003,and 61203006)the Innovation Program of Shanghai Municipal Education Commission(10ZZ61 and 14ZZ151)the Science and Technology Foundation of Guizhou Province(20122316)
文摘In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for such algorithm over undirected connected graphs is provided. Furthermore, a simple yet generic criterion is also presented to guarantee synchronized oscillatory motions in coupled harmonic oscillators. Subsequently, the simulation results are worked out to demonstrate the efficiency and feasibility of the theoretical results.
基金Supported by National Natural Science Foundation of China(31100460)Natural Science Foundation of Hainan Province(312026)Fundamental Research Fund for the Rubber Research Institute in Chinese Academy of Tropical Agricultural Sciences(1630022011014)
文摘Light-harvesting chlorophyll a/b-binding (LHC) proteins are a group of nuclear-encoded thylakoid proteins that play a key role in plant photosynthesis and are widely involved in light harvesting, energy transfer to the reaction center, maintenance of thylakoid membrane structure, photoprotection and response to en- vironmental conditions, etc. Although/dw supergene family is well characterized in model plants such as Arabidopsis, rice and poplar, little information is available in castor bean (Ricinus communis L. ). In this study, a genome-wide search was carried out for the first time to identify castor bean L/w genes and analyze the gene structures, biochemical properties, evolutionary relationships and expression characteristics based on the published data of castor bean genome and ESTs. According to the results, a total of 28 Rclhcs genes representing 13 gene families ( l_hca , l_hcb , Elip , Ohpl , Ohp2 , SEP1, SEP2 , SEP3 , SEP4 , SEP5 , PsbS , Rieske and FCII) and 25 subgene families were identified in castor bean genome; to be specific, 25 and 5 genes were found to have corresponding ESTs in NCBI and have al- ternative splicing isoforlns, respectively. These RcLhcs contain 0 to 9 introns and distribute on 26 of the 25 878 released scaffolds. All RcLhcs genes were found to be expressed in all examined tissues, i.e. leaf, flower, II/III stage endosperm, V/VI stage endosperm and seed, with the highest expression level in leaf tissue.
文摘AIM: To investigate and test a causal model derivedfrom previous meta-analytic data of health provider be-haviors and patient satisfaction.METHODS: A literature search was conducted forrelevant manuscripts that met the following criteria:Reported an analysis of provider-patient interaction inthe context of an oncology interview; the study hadto measure at least two of the variables of interest tothe model (provider activity, provider patient-centeredcommunication, provider facilitative communication,patient activity, patient involvement, and patient satis-faction or reduced anxiety); and the information had tobe reported in a manner that permitted the calculationof a zero-order correlation between at least two of thevariables under consideration. Data were transformedinto correlation coefficients and compiled to producethe correlation matrix used for data analysis. The test of the causal model is a comparison of the expected correlation matrix generated using an Ordinary Least Squares method of estimation. The expected matrix iscompared to the actual matrix of zero order correlation coeffcients. A model is considered a possible ft if the level of deviation is less than expected due to random sampling error as measured by a chi-square statistic. The signifcance of the path coeffcients was tested us-ing a z test. Lastly, the Sobel test provides a test of the level of mediation provided by a variable and provides an estimate of the level of mediation for each connec-tion. Such a test is warranted in models with multiple paths.RESULTS: A test of the original model indicated a lack of ft with the summary data. The largest discrepancy in the model was between the patient satisfaction and the provider patient-centered utterances. The observed correlation was far larger than expected given a medi-ated relationship. The test of a modifed model was un-dertaken to determine possible ft. The corrected model provides a fit to within tolerance as evaluated by the test statistic, χ2 (8, average n = 342) = 10.22. Each of the path coefficients for the model reveals that each one can be considered signifcant, P 〈 0.05. The Sobel test examining the impact of the mediating variables demonstrated that patient involvement is a signifcantmediator in the model, Sobel statistic = 3.56, P 〈 0.05. Patient active was also demonstrated to be a signifcant mediator in the model, Sobel statistic = 4.21, P 〈 0.05. The statistics indicate that patient behavior mediates the relationship between provider behavior and patient satisfaction with the interaction.CONCLUSION: The results demonstrate empirical support for the importance of patient-centered care and satisfy the need for empirical casual support of provider-patient behaviors on health outcomes.
文摘Under the background of intelligent transportation application, QoS for various services is different in wireless com-munication. Based on the MAC layer protocol, this paper analyzes the QoS in IEEE 802.11 MAC protocol framework, and proposes a new design of a Differentiation Enhanced Adaptive EDCA (enhanced distribution channel access) approach. The proposed approach adjusts the window zooming dynamically according to the collision rate in sending data frames, makes random offset, and further distinguishes the competition parameters of the data frames that have the same priority, so as to reduce the conflict among the data frames, and improve the channel utilization. Experiments with different service cases were conducted. The simulation results show that: comparing with the conventional EDCA method, the proposed approach can ensure that high priority services are sent with priority, and the overall QoS is highly improved.
基金the financial support from the National Natural Science Foundation of China(No.51804188)the support of the Yunnan Yuntianhua Co.,Ltd.,China,for providing the phosphate samples.
文摘We analyzed a novel cationic collector using chemical plant byproducts,such as cetyltrimethylammonium bromide(CTAB)and dibutyl phthalate(DBP).Our aim is to establish a highly effective and economical process for the removal of quartz from collophane.A microflotation test with a 25 mg·L^(−1)collector at pH value of 6-10 demonstrates a considerable difference in the floatability of pure quartz and fluorapatite.Flotation tests for a collophane sample subjected to the first reverse flotation for magnesium removal demonstrates that a rough flotation process(using a 0.4 kg·t−1 new collector at pH=6)results in a collophane concentrate with 29.33wt%P_(2)O_(5)grade and 12.66wt%SiO2 at a 79.69wt%P_(2)O_(5)recovery,providing desirable results.Mechanism studies using Fourier transform infrared spectroscopy,zeta potential,and contact angle measurements show that the adsorption capacity of the new collector for quartz is higher than that for fluorapatite.The synergistic effect of DBP increases the difference in hydrophobicity between quartz and fluorapatite.The maximum defoaming rate of the novel cationic collector reaches 142.8 mL·min−1.This is considerably higher than that of a conventional cationic collector.
文摘Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords.An efficient classification algorithm for retrieving documents based on keyword words is required.The traditional algorithm performs less because it never considers words’polysemy and the relationship between bag-of-words in keywords.To solve the above problem,Semantic Featured Convolution Neural Networks(SF-CNN)is proposed to obtain the key relationships among the searching keywords and build a structure for matching the words for retrieving correct text documents.The proposed SF-CNN is based on deep semantic-based bag-of-word representation for document retrieval.Traditional deep learning methods such as Convolutional Neural Network and Recurrent Neural Network never use semantic representation for bag-of-words.The experiment is performed with different document datasets for evaluating the performance of the proposed SF-CNN method.SF-CNN classifies the documents with an accuracy of 94%than the traditional algorithms.
基金the Australian Institute of Nuclear Science and Engineering (AINSE) Limited for providing financial assistance in the form of a Post Graduate Research Award (PGRA) to carry out this worksupported by the Australian Research Council under grants DP200101862, DP210101486, and FL210100050
文摘High-performance lithium-ion batteries(LIB)are important in powering emerging technologies.Cathodes are regarded as the bottleneck of increasing battery energy density,among which layered oxides are the most promising candidates for LIB.However,a limitation with layered oxides cathodes is the transition metal and Li site mixing,which significantly impacts battery capacity and cycling stability.Despite recent research on Li/Ni mixing,there is a lack of comprehensive understanding of the origin of cation mixing between the transition metal and Li;therefore,practical means to address it.Here,a critical review of cation mixing in layered cathodes has been provided,emphasising the understanding of cation mixing mechanisms and their impact on cathode material design.We list and compare advanced characterisation techniques to detect cation mixing in the material structure;examine methods to regulate the degree of cation mixing in layered oxides to boost battery capacity and cycling performance,and critically assess how these can be applied practically.An appraisal of future research directions,including superexchange interaction to stabilise structures and boost capacity retention has also been concluded.Findings will be of immediate benefit in the design of layered cathodes for high-performance rechargeable LIB and,therefore,of interest to researchers and manufacturers.
文摘The Republic of Azerbaijan, is a country in the south Caucasus having continental influenced climate with warm summer and mild cold, dry winters. Relating to its climate this region has a rich and very interesting vegetation cover. In presented article the vegetation communities with the presence of Juniperus communis L. species and subspecies have been described.
基金funded by Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,under grant No.(PNURSP2022R161).
文摘The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).