The technology of Ultra-High Voltage (UHV) transmission requires higher dependability for electric power grid. Power Grid Communication Networking (PGCN), the fundamental information infrastructure, severs data tr...The technology of Ultra-High Voltage (UHV) transmission requires higher dependability for electric power grid. Power Grid Communication Networking (PGCN), the fundamental information infrastructure, severs data transmission including control signal, protection signal, and common data services. Dependability is the necessary requirement to ensure services timely and accurately. Dependability analysis aims to predicate operation status and provide suitable strategies getting rid of the potential dangers. Due to the dependability of PGCN may be affected by external environment, devices quality, implementation strategies, and so on, the scale explosion and the structure complexity make the PGCN's dependability much challenging. In this paper, with the observation of interdependency between power grid and PGCN, we propose an electricity services based dependability analysis model of PGCN. The model includes methods of analyzing its dependability and procedures of designing the dependable strategies. We respectively discuss the deterministic analysis method based on matrix analysis and stochastic analysis model based on stochastic Petri nets.展开更多
The topology of in-home power line communication(PLC) networks varies frequently, which makes traditional routing algorithms failure. To solve this problem, an end-to-end transmission time for remaining path(TTRP) met...The topology of in-home power line communication(PLC) networks varies frequently, which makes traditional routing algorithms failure. To solve this problem, an end-to-end transmission time for remaining path(TTRP) metric-based opportunistic routing(TTRPOR) is proposed. Since a local broadcasting scheme is adopted, the algorithm can find the optimal path for forwarding packets in a dynamic PLC network. The closed-form of the outage probability for a PLC channel is derived to estimate the TTRP. It is proved that the average throughput can achieve maximum as the metric TTRP is utilized to sort candidate forwarding nodes.Numerical results show that the end-to-end throughput of networks with TTRPOR, outperforms that of the network adopting DSR and EXOR, especially for the case of varying-topology in-home PLC networks.展开更多
In this work,a novel performance analysis method for evaluating the robustness of emerging power distribution networks(PDNs),which involve deployable renewable energy sources,is proposed.This is realized with the aid ...In this work,a novel performance analysis method for evaluating the robustness of emerging power distribution networks(PDNs),which involve deployable renewable energy sources,is proposed.This is realized with the aid of the outage probability(OP)criterion in the context of cooperative communications,which is widely considered in modern wireless communication systems.The main usefulness of this method is that it allows the involved components to communicate to each-other by means of a robust and flexible wireless sensor network architecture.In this context,any conventional medium voltage(MV)bus of the PDN is represented as a wireless relay node where data signals gathered from each MV bus can be forwarded reliably to a control station for the subsequent processing.The received signals at wireless nodes are decoded and then forwarded to ensure minimal errors and maximal robustness at the receiving site.The considered OP analysis denotes the probability that the power of a received information signal drops below a pre-defined threshold which satisfies the acceptable Quality of Service requirements of a reliable signal reception.To this end,simple closed-form expressions are proposed for the OP of a regenerative cooperative-based PDN in the presence of various multipath fading effects,which degrade information signals during wireless transmission.The offered results are rather simple and provide meaningful insights for the design and deployment of smart grid systems.展开更多
基金supported by the National Key Basic Research and Development (973) Program of China(No. 2010CB328105)the National Natural Science Foundation of China (Nos. 61020106002,61071065,and 11171368)+2 种基金China Postdoctoral Science Foundation (No. 2013M540952)Tsinghua University Initiative Scientific Research Program (No. 20121087999)SGCC research and development projects
文摘The technology of Ultra-High Voltage (UHV) transmission requires higher dependability for electric power grid. Power Grid Communication Networking (PGCN), the fundamental information infrastructure, severs data transmission including control signal, protection signal, and common data services. Dependability is the necessary requirement to ensure services timely and accurately. Dependability analysis aims to predicate operation status and provide suitable strategies getting rid of the potential dangers. Due to the dependability of PGCN may be affected by external environment, devices quality, implementation strategies, and so on, the scale explosion and the structure complexity make the PGCN's dependability much challenging. In this paper, with the observation of interdependency between power grid and PGCN, we propose an electricity services based dependability analysis model of PGCN. The model includes methods of analyzing its dependability and procedures of designing the dependable strategies. We respectively discuss the deterministic analysis method based on matrix analysis and stochastic analysis model based on stochastic Petri nets.
基金supported in part by Open Research Fund of National Key Laboratory of Electromagnetic EnvironmentChina Research Institute of Radiowave Propagation (Grant No. 201500013)+3 种基金Open Research Fund of National Mobile Communications Research LaboratoryJiangsu Provincial Science Foundation Project (Grant No. BK20150786)Southeast University (Grant No. 2013D02)National Natural Science Foundation of China (Grants Nos. 61501238, 61271230, 61472190)
文摘The topology of in-home power line communication(PLC) networks varies frequently, which makes traditional routing algorithms failure. To solve this problem, an end-to-end transmission time for remaining path(TTRP) metric-based opportunistic routing(TTRPOR) is proposed. Since a local broadcasting scheme is adopted, the algorithm can find the optimal path for forwarding packets in a dynamic PLC network. The closed-form of the outage probability for a PLC channel is derived to estimate the TTRP. It is proved that the average throughput can achieve maximum as the metric TTRP is utilized to sort candidate forwarding nodes.Numerical results show that the end-to-end throughput of networks with TTRPOR, outperforms that of the network adopting DSR and EXOR, especially for the case of varying-topology in-home PLC networks.
基金This work was supported by the Research Program DGRES(MIS 380360)within the Research Activity ARCHIMEDES III,funded by the NSRF 2007-2013,Greece.
文摘In this work,a novel performance analysis method for evaluating the robustness of emerging power distribution networks(PDNs),which involve deployable renewable energy sources,is proposed.This is realized with the aid of the outage probability(OP)criterion in the context of cooperative communications,which is widely considered in modern wireless communication systems.The main usefulness of this method is that it allows the involved components to communicate to each-other by means of a robust and flexible wireless sensor network architecture.In this context,any conventional medium voltage(MV)bus of the PDN is represented as a wireless relay node where data signals gathered from each MV bus can be forwarded reliably to a control station for the subsequent processing.The received signals at wireless nodes are decoded and then forwarded to ensure minimal errors and maximal robustness at the receiving site.The considered OP analysis denotes the probability that the power of a received information signal drops below a pre-defined threshold which satisfies the acceptable Quality of Service requirements of a reliable signal reception.To this end,simple closed-form expressions are proposed for the OP of a regenerative cooperative-based PDN in the presence of various multipath fading effects,which degrade information signals during wireless transmission.The offered results are rather simple and provide meaningful insights for the design and deployment of smart grid systems.