Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity comm...Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.展开更多
Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networ...Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks,beyond the theoretical capacity limit.Despite the extensive research on SC,there is a lack of comprehensive survey on technologies,solutions,applications,and challenges for SC.In this article,the development of SC is first reviewed and its characteristics,architecture,and advantages are summarized.Next,key technologies such as semantic extraction,semantic encoding,and semantic segmentation are discussed and their corresponding solutions in terms of efficiency,robustness,adaptability,and reliability are summarized.Applications of SC to UAV communication,remote image sensing and fusion,intelligent transportation,and healthcare are also presented and their strategies are summarized.Finally,some challenges and future research directions are presented to provide guidance for further research of SC.展开更多
Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluat...Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluates the corresponding performance in terms of the tag activation distance and the system capacity.Specifically,we derive the activation probabilities of the tag in the case of single-antenna and multi-antenna transmitters.Besides,we obtain the capacity expressions for the ambient backscatter communication system with beamforming and illustrate the power allocation that maximizes the system capacity when the tag is activated.Finally,simulation results are provided to corroborate our proposed studies.展开更多
In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ...In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.展开更多
As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure...As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.展开更多
Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the stric...Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the strict transmission requirements on reliability and latency,Device-to-Device(D2D)communications is introduced to assist haptic communications.In particular,the teleoperators with poor channel quality are assisted by auxiliaries,and each auxiliary and its corresponding teleoperator constitute a D2D pair.However,the haptic interaction and the scarcity of radio resources pose severe challenges to the resource allocation,especially facing the sporadic packet arrivals.First,the contentionbased access scheme is applied to achieve low-latency transmission,where the resource scheduling latency is omitted and users can directly access available resources.In this context,we derive the reliability index of D2D pairs under the contention-based access scheme,i.e.,closed-loop packet error probability.Then,the reliability performance is guaranteed by bidirectional power control,which aims to minimize the sum packet error probability of all D2D pairs.Potential game theory is introduced to solve the problem with low complexity.Accordingly,a distributed power control algorithm based on synchronous log-linear learning is proposed to converge to the optimal Nash Equilibrium.Experimental results demonstrate the superiority of the proposed learning algorithm.展开更多
Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on mult...Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. The transmitter extracts semantic features for two users separately and then effectively fuses them for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance their performance. Considering the different channel state information(CSI) of both users over DBC,a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel.Experimental results show that the proposed system outperforms the traditional broadcasting schemes.展开更多
This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit pow...This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.展开更多
Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,...Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.展开更多
Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networ...Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networks and applications have been rapidly evolving from achieving “connected things” to embracing “connected intelligence”.展开更多
In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a p...In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition methods merely incorporate external language models on the decoder side, leading to insufficient semantic alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the extended ATCC data. To address these issues, we propose a speech-text multimodal dual-tower architecture for speech recognition. It employs cross-modal interactions to achieve close semantic alignment during the encoding stage and strengthen its capabilities in modeling auditory long-distance context dependencies. In addition, a two-stage training strategy is elaborately devised to derive semantics-aware acoustic representations effectively. The first stage focuses on pre-training the speech-text multimodal encoding module to enhance inter-modal semantic alignment and aural long-distance context dependencies. The second stage fine-tunes the entire network to bridge the input modality variation gap between the training and inference phases and boost generalization performance. Extensive experiments demonstrate the effectiveness of the proposed speech-text multimodal speech recognition method on the ATCC and AISHELL-1 datasets. It reduces the character error rate to 6.54% and 8.73%, respectively, and exhibits substantial performance gains of 28.76% and 23.82% compared with the best baseline model. The case studies indicate that the obtained semantics-aware acoustic representations aid in accurately recognizing terms with similar pronunciations but distinctive semantics. The research provides a novel modeling paradigm for semantics-aware speech recognition in air traffic control communications, which could contribute to the advancement of intelligent and efficient aviation safety management.展开更多
This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The mai...This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.展开更多
Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,becaus...Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.展开更多
Intelligent Reflecting Surface(IRS),with the potential capability to reconstruct the electromagnetic propagation environment,evolves a new IRSassisted covert communications paradigm to eliminate the negligible detecti...Intelligent Reflecting Surface(IRS),with the potential capability to reconstruct the electromagnetic propagation environment,evolves a new IRSassisted covert communications paradigm to eliminate the negligible detection of malicious eavesdroppers by coherently beaming the scattered signals and suppressing the signals leakage.However,when multiple IRSs are involved,accurate channel estimation is still a challenge due to the extra hardware complexity and communication overhead.Besides the crossinterference caused by massive reflecting paths,it is hard to obtain the close-formed solution for the optimization of covert communications.On this basis,the paper improves a heterogeneous multi-agent deep deterministic policy gradient(MADDPG)approach for the joint active and passive beamforming(Joint A&P BF)optimization without the channel estimation,where the base station(BS)and multiple IRSs are taken as different types of agents and learn to enhance the covert spectrum efficiency(CSE)cooperatively.Thanks to the‘centralized training and distributed execution’feature of MADDPG,each agent can execute the active or passive beamforming independently based on its partial observation without referring to others.Numeral results demonstrate that the proposed deep reinforcement learning(DRL)approach could not only obtain a preferable CSE of legitimate users and a low detection of probability(LPD)of warden,but also alleviate the communication overhead and simplify the IRSs deployment.展开更多
With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety...With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety and efficiency.However,the uneven energy collection and consumption among IoT devices at varying distances may lead to resource imbalance within energy harvesting networks,thereby resulting in low energy transmission efficiency.To enhance the energy transmission efficiency of IoT devices in energy harvesting,this paper focuses on the utilization of collaborative communication,along with pricing-based incentive mechanisms and auction strategies.We propose a dynamic relay selection scheme,including a ladder pricing mechanism based on energy level and a Kuhn-Munkre Algorithm based on an auction theory employing a negotiation mechanism,to encourage more IoT devices to participate in the collaboration process.Simulation results demonstrate that the proposed algorithm outperforms traditional algorithms in terms of improving the energy efficiency of the system.展开更多
Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wirel...Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.展开更多
In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open...In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.展开更多
In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environ...In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.展开更多
Extremely large-scale multiple-input multiple-output(XL-MIMO)and terahertz(THz)communications are pivotal candidate technologies for supporting the development of 6G mobile networks.However,these techniques invalidate...Extremely large-scale multiple-input multiple-output(XL-MIMO)and terahertz(THz)communications are pivotal candidate technologies for supporting the development of 6G mobile networks.However,these techniques invalidate the common assumptions of far-field plane waves and introduce many new properties.To accurately understand the performance of these new techniques,spherical wave modeling of near-field communications needs to be applied for future research.Hence,the investigation of near-field communication holds significant importance for the advancement of 6G,which brings many new and open research challenges in contrast to conventional far-field communication.In this paper,we first formulate a general model of the near-field channel and discuss the influence of spatial nonstationary properties on the near-field channel modeling.Subsequently,we discuss the challenges encountered in the near field in terms of beam training,localization,and transmission scheme design,respectively.Finally,we point out some promising research directions for near-field communications.展开更多
Remit of Journal ZTE Communications publishes original theoretical papers,research findings,and surveys on a broad range of communications topics,including communications and information system design,optical fiber an...Remit of Journal ZTE Communications publishes original theoretical papers,research findings,and surveys on a broad range of communications topics,including communications and information system design,optical fiber and electro⁃optical engineering,microwave technology,radio wave propagation,antenna engineering,electromagnetics,signal and image processing,and power engineering.The journal is designed to be an integrated forum for university academics and industry researchers from around the world.展开更多
文摘Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.
基金supported by the Natural Science Foundation of China under Grants 61971084,62025105,62001073,62272075the National Natural Science Foundation of Chongqing under Grants cstc2021ycjh-bgzxm0039,cstc2021jcyj-msxmX0031+1 种基金the Science and Technology Research Program for Chongqing Municipal Education Commission KJZD-M202200601the Support Program for Overseas Students to Return to China for Entrepreneurship and Innovation under Grants cx2021003,cx2021053.
文摘Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks,beyond the theoretical capacity limit.Despite the extensive research on SC,there is a lack of comprehensive survey on technologies,solutions,applications,and challenges for SC.In this article,the development of SC is first reviewed and its characteristics,architecture,and advantages are summarized.Next,key technologies such as semantic extraction,semantic encoding,and semantic segmentation are discussed and their corresponding solutions in terms of efficiency,robustness,adaptability,and reliability are summarized.Applications of SC to UAV communication,remote image sensing and fusion,intelligent transportation,and healthcare are also presented and their strategies are summarized.Finally,some challenges and future research directions are presented to provide guidance for further research of SC.
基金supported by National Natural Science Foundation of China(No.62101601)the Fundamental Research Funds for the Central Universities under Grant 2020JBM017Joint Key Project of National Natural Science Foundation of China(No.U22B2004)。
文摘Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluates the corresponding performance in terms of the tag activation distance and the system capacity.Specifically,we derive the activation probabilities of the tag in the case of single-antenna and multi-antenna transmitters.Besides,we obtain the capacity expressions for the ambient backscatter communication system with beamforming and illustrate the power allocation that maximizes the system capacity when the tag is activated.Finally,simulation results are provided to corroborate our proposed studies.
文摘In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.
基金supported by the National Natural Science Foundation of China(No.62293481,No.62071058)。
文摘As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.
基金supported in part by the Jiangsu Provincial Natural Science Foundation for Excellent Young Scholars(Grant No.BK20170089)in part by the National Natural Science Foundation of China(Grant No.61671474)in part by the Jiangsu Provincial Natural Science Fund for Outstanding Young Scholars(Grant No.BK20180028).
文摘Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the strict transmission requirements on reliability and latency,Device-to-Device(D2D)communications is introduced to assist haptic communications.In particular,the teleoperators with poor channel quality are assisted by auxiliaries,and each auxiliary and its corresponding teleoperator constitute a D2D pair.However,the haptic interaction and the scarcity of radio resources pose severe challenges to the resource allocation,especially facing the sporadic packet arrivals.First,the contentionbased access scheme is applied to achieve low-latency transmission,where the resource scheduling latency is omitted and users can directly access available resources.In this context,we derive the reliability index of D2D pairs under the contention-based access scheme,i.e.,closed-loop packet error probability.Then,the reliability performance is guaranteed by bidirectional power control,which aims to minimize the sum packet error probability of all D2D pairs.Potential game theory is introduced to solve the problem with low complexity.Accordingly,a distributed power control algorithm based on synchronous log-linear learning is proposed to converge to the optimal Nash Equilibrium.Experimental results demonstrate the superiority of the proposed learning algorithm.
基金supported in part by National Key R&D Project of China (2023YFB2906201)the National Natural Science Foundation of China (62222111, 62125108 and 62431015)the Fundamental Research Funds for the Central Universities。
文摘Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. The transmitter extracts semantic features for two users separately and then effectively fuses them for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance their performance. Considering the different channel state information(CSI) of both users over DBC,a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel.Experimental results show that the proposed system outperforms the traditional broadcasting schemes.
基金supported in part by National Natural Science Foundation of China under Grant 62371004 and Grant 62301005in part by the University Synergy Innovation Program of Anhui Province under Grant GXXT-2022-055+1 种基金in part by the Natural Science Foundation of Anhui Province under Grant 2308085QF197in part by the Natural Science Research Project of Education Department of Anhui Province of China under Grant 2023AH051031。
文摘This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.
基金supported by the National Natural Science Foundation of China(82271645)National Key Research and Development Program of China(2021YFC2700200 to F.S.)。
文摘Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.
文摘Generative artificial intelligence(AI), as an emerging paradigm in content generation, has demonstrated its great potentials in creating high-fidelity data including images, texts, and videos. Nowadays wireless networks and applications have been rapidly evolving from achieving “connected things” to embracing “connected intelligence”.
基金This research was funded by Shenzhen Science and Technology Program(Grant No.RCBS20221008093121051)the General Higher Education Project of Guangdong Provincial Education Department(Grant No.2020ZDZX3085)+1 种基金China Postdoctoral Science Foundation(Grant No.2021M703371)the Post-Doctoral Foundation Project of Shenzhen Polytechnic(Grant No.6021330002K).
文摘In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition methods merely incorporate external language models on the decoder side, leading to insufficient semantic alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the extended ATCC data. To address these issues, we propose a speech-text multimodal dual-tower architecture for speech recognition. It employs cross-modal interactions to achieve close semantic alignment during the encoding stage and strengthen its capabilities in modeling auditory long-distance context dependencies. In addition, a two-stage training strategy is elaborately devised to derive semantics-aware acoustic representations effectively. The first stage focuses on pre-training the speech-text multimodal encoding module to enhance inter-modal semantic alignment and aural long-distance context dependencies. The second stage fine-tunes the entire network to bridge the input modality variation gap between the training and inference phases and boost generalization performance. Extensive experiments demonstrate the effectiveness of the proposed speech-text multimodal speech recognition method on the ATCC and AISHELL-1 datasets. It reduces the character error rate to 6.54% and 8.73%, respectively, and exhibits substantial performance gains of 28.76% and 23.82% compared with the best baseline model. The case studies indicate that the obtained semantics-aware acoustic representations aid in accurately recognizing terms with similar pronunciations but distinctive semantics. The research provides a novel modeling paradigm for semantics-aware speech recognition in air traffic control communications, which could contribute to the advancement of intelligent and efficient aviation safety management.
文摘This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.
基金the Researchers Supporting Project Number(RSP2023R 102)King Saud University,Riyadh,Saudi Arabia.
文摘Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.
基金supported by the Key Laboratory of Near Ground Detection and Perception Technology(No.6142414220406 and 6142414210101)Shaanxi and Taicang Keypoint Research and Invention Program(No.2021GXLH-01-15 and TC2019SF03)。
文摘Intelligent Reflecting Surface(IRS),with the potential capability to reconstruct the electromagnetic propagation environment,evolves a new IRSassisted covert communications paradigm to eliminate the negligible detection of malicious eavesdroppers by coherently beaming the scattered signals and suppressing the signals leakage.However,when multiple IRSs are involved,accurate channel estimation is still a challenge due to the extra hardware complexity and communication overhead.Besides the crossinterference caused by massive reflecting paths,it is hard to obtain the close-formed solution for the optimization of covert communications.On this basis,the paper improves a heterogeneous multi-agent deep deterministic policy gradient(MADDPG)approach for the joint active and passive beamforming(Joint A&P BF)optimization without the channel estimation,where the base station(BS)and multiple IRSs are taken as different types of agents and learn to enhance the covert spectrum efficiency(CSE)cooperatively.Thanks to the‘centralized training and distributed execution’feature of MADDPG,each agent can execute the active or passive beamforming independently based on its partial observation without referring to others.Numeral results demonstrate that the proposed deep reinforcement learning(DRL)approach could not only obtain a preferable CSE of legitimate users and a low detection of probability(LPD)of warden,but also alleviate the communication overhead and simplify the IRSs deployment.
基金funded by the Researchers Supporting Project Number RSPD2024R681,King Saud University,Riyadh,Saudi Arabia.
文摘With the rapid development and application of energy harvesting technology,it has become a prominent research area due to its significant benefits in terms of green environmental protection,convenience,and high safety and efficiency.However,the uneven energy collection and consumption among IoT devices at varying distances may lead to resource imbalance within energy harvesting networks,thereby resulting in low energy transmission efficiency.To enhance the energy transmission efficiency of IoT devices in energy harvesting,this paper focuses on the utilization of collaborative communication,along with pricing-based incentive mechanisms and auction strategies.We propose a dynamic relay selection scheme,including a ladder pricing mechanism based on energy level and a Kuhn-Munkre Algorithm based on an auction theory employing a negotiation mechanism,to encourage more IoT devices to participate in the collaboration process.Simulation results demonstrate that the proposed algorithm outperforms traditional algorithms in terms of improving the energy efficiency of the system.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Beijing Natural Science Foundation under grant number L212003.
文摘Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.
文摘In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.
基金supported by National Natural Science Foundation of China(NSFC)(No.62101274 and 62101275)Natural Science Foundation of Jiangsu Province(BK20210640)Open Research Fund of National Mobile Communications Research Laboratory Southeast University under Grant 2021D03。
文摘In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.
基金supported in part by National Key Research and Develop⁃ment Young Scientist Project 2023YFB2905100the National Natural Sci⁃ence Foundation of China under Grant Nos.62201137 and 62331023+1 种基金the Fundamental Research Funds for the Central Universities under Grant No.2242022k60001the Research Fund of National Mobile Communications Research Laboratory,Southeast University,China under Grant No.2023A03.
文摘Extremely large-scale multiple-input multiple-output(XL-MIMO)and terahertz(THz)communications are pivotal candidate technologies for supporting the development of 6G mobile networks.However,these techniques invalidate the common assumptions of far-field plane waves and introduce many new properties.To accurately understand the performance of these new techniques,spherical wave modeling of near-field communications needs to be applied for future research.Hence,the investigation of near-field communication holds significant importance for the advancement of 6G,which brings many new and open research challenges in contrast to conventional far-field communication.In this paper,we first formulate a general model of the near-field channel and discuss the influence of spatial nonstationary properties on the near-field channel modeling.Subsequently,we discuss the challenges encountered in the near field in terms of beam training,localization,and transmission scheme design,respectively.Finally,we point out some promising research directions for near-field communications.
文摘Remit of Journal ZTE Communications publishes original theoretical papers,research findings,and surveys on a broad range of communications topics,including communications and information system design,optical fiber and electro⁃optical engineering,microwave technology,radio wave propagation,antenna engineering,electromagnetics,signal and image processing,and power engineering.The journal is designed to be an integrated forum for university academics and industry researchers from around the world.