Emerging wireless community cloud enables usergenerated video content to be shared and consumed in a social context. However, the nature of shared wireless medium and timevarying channels seriously limits the quality ...Emerging wireless community cloud enables usergenerated video content to be shared and consumed in a social context. However, the nature of shared wireless medium and timevarying channels seriously limits the quality of service(QoS), partially owing to the lack of mechanisms for effectively utilizing multi-rate channel resources. In this paper, the joint optimization of admission control and rate adaptation is proposed, resulting in a bandwidth-aware rate-adaptive admission control(BRAC) scheme to provide bandwidth guarantee for sharing social multimedia contents. The analytical approach leads to the following major contributions:(1) a bandwidth-aware rate selection(BRS) algorithm to optimally meet the bandwidth requirement of the data session and channel conditions at the physical layer;(2) a routing-coupled rate adaption and admission control algorithm to admit data sessions with bandwidth guarantee. Moreover, extensive numerical simulations suggest that BRAC is efficient and effective in meeting the bandwidth requirements for sharing social multimedia contents. These insights will shed light on communication system implementation for multimedia content sharing over multirate wireless community cloud.展开更多
The collaboration tools offered by Cloud Computing have increased the need to share data and services within companies or between autonomous organizations. This has led to the deployment of community cloud infrastruct...The collaboration tools offered by Cloud Computing have increased the need to share data and services within companies or between autonomous organizations. This has led to the deployment of community cloud infrastructures. However, several challenges will arise from this grouping of heterogeneous organizations. One of the main challenges is the management of trust between the actors of the community. Trust issues arise from the uncertainty about the quality of the resources and entities involved. The quality of a resource can be examined from a security or functional perspective. Therefore, ensuring security and monitoring the quality of resources is to ensure a high level of trust. Therefore, we propose in this paper a technique for dynamic trust management and quality monitoring of resources shared between organizations. Our approach consists, on the one hand, in evaluating the quality of resources based on quality of service measurement attributes and, on the other hand, in updating the trust values according to the information deduced from these measurements. The proposed framework is evaluated in terms of resource sharing success rate and execution time. Experimental results and comparison with TNA-SL and InterTrust models show that the framework can identify and track the behavior of malicious organizations with relatively low execution time.展开更多
The adoption of Cloud Computing services in everyday business life has grown rapidly in recent years due to the many benefits of this paradigm. The various collaboration tools offered by Cloud Computing have eliminate...The adoption of Cloud Computing services in everyday business life has grown rapidly in recent years due to the many benefits of this paradigm. The various collaboration tools offered by Cloud Computing have eliminated or reduced the notion of distance between entities of the same company or between different organizations. This has led to an increase in the need to share resources (data and services). Community Cloud environments have thus emerged to facilitate interactions between organizations with identical needs and with specific and high security requirements. However, establishing trust and secure resource sharing relationships is a major challenge in this type of complex and heterogeneous environment. This paper proposes a trust assessment model (SeComTrust) based on the Zero Trust cybersecurity strategy. First, the paper introduces a community cloud architecture subdivided into different security domains. Second, it presents a process for selecting a trusted organization for an exchange based on direct or recommended trust value and reputation. Finally, a system for promoting or relegating organizations in the different security domains is applied. Experimental results show that our model guarantees the scalability of a community cloud with a high success rate of secure and quality resource sharing.展开更多
基金sponsored by the following funds:the National Natural Science Foundation of China(No.61502381)the Fundamental Research Funds for the Central Universities(No.xjj2015065)the China Post Doctoral Science Foundation(No.2015M570836)
文摘Emerging wireless community cloud enables usergenerated video content to be shared and consumed in a social context. However, the nature of shared wireless medium and timevarying channels seriously limits the quality of service(QoS), partially owing to the lack of mechanisms for effectively utilizing multi-rate channel resources. In this paper, the joint optimization of admission control and rate adaptation is proposed, resulting in a bandwidth-aware rate-adaptive admission control(BRAC) scheme to provide bandwidth guarantee for sharing social multimedia contents. The analytical approach leads to the following major contributions:(1) a bandwidth-aware rate selection(BRS) algorithm to optimally meet the bandwidth requirement of the data session and channel conditions at the physical layer;(2) a routing-coupled rate adaption and admission control algorithm to admit data sessions with bandwidth guarantee. Moreover, extensive numerical simulations suggest that BRAC is efficient and effective in meeting the bandwidth requirements for sharing social multimedia contents. These insights will shed light on communication system implementation for multimedia content sharing over multirate wireless community cloud.
文摘The collaboration tools offered by Cloud Computing have increased the need to share data and services within companies or between autonomous organizations. This has led to the deployment of community cloud infrastructures. However, several challenges will arise from this grouping of heterogeneous organizations. One of the main challenges is the management of trust between the actors of the community. Trust issues arise from the uncertainty about the quality of the resources and entities involved. The quality of a resource can be examined from a security or functional perspective. Therefore, ensuring security and monitoring the quality of resources is to ensure a high level of trust. Therefore, we propose in this paper a technique for dynamic trust management and quality monitoring of resources shared between organizations. Our approach consists, on the one hand, in evaluating the quality of resources based on quality of service measurement attributes and, on the other hand, in updating the trust values according to the information deduced from these measurements. The proposed framework is evaluated in terms of resource sharing success rate and execution time. Experimental results and comparison with TNA-SL and InterTrust models show that the framework can identify and track the behavior of malicious organizations with relatively low execution time.
文摘The adoption of Cloud Computing services in everyday business life has grown rapidly in recent years due to the many benefits of this paradigm. The various collaboration tools offered by Cloud Computing have eliminated or reduced the notion of distance between entities of the same company or between different organizations. This has led to an increase in the need to share resources (data and services). Community Cloud environments have thus emerged to facilitate interactions between organizations with identical needs and with specific and high security requirements. However, establishing trust and secure resource sharing relationships is a major challenge in this type of complex and heterogeneous environment. This paper proposes a trust assessment model (SeComTrust) based on the Zero Trust cybersecurity strategy. First, the paper introduces a community cloud architecture subdivided into different security domains. Second, it presents a process for selecting a trusted organization for an exchange based on direct or recommended trust value and reputation. Finally, a system for promoting or relegating organizations in the different security domains is applied. Experimental results show that our model guarantees the scalability of a community cloud with a high success rate of secure and quality resource sharing.