The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su...The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.展开更多
Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations...Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.展开更多
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ...Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.展开更多
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif...Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.展开更多
Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest chang...Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.展开更多
Globally,various types of pollution affect coastal waters as a result of human activities.Bioaugmentation and biostimulation are effective methods for treating water pollution.However,few studies have explored the res...Globally,various types of pollution affect coastal waters as a result of human activities.Bioaugmentation and biostimulation are effective methods for treating water pollution.However,few studies have explored the response of coastal prokaryotic and eukaryotic communities to bioaugmentation and biostimulation.Here,a 28-day outdoor mesocosm experiment with two treatments(bioaugmentation-A and combined treatment of bioaugmentation and biostimulation-AS)and a control(untreated-C)were carried out.The experiment was conducted in Meishan Bay to explore the composition,dynamics,and co-occurrence patterns of prokaryotic and eukaryotic communities in response to the A and AS using 16S rRNA and 18S rRNA gene amplicon sequencing.After treatment,Gammaproteobacteria and Epsilonproteobacteria were significantly increased in group AS compared to group C,while Flavobacteriia and Saprospirae were significantly reduced.Dinoflagellata was significantly reduced in AS compared to C,while Chrysophyta was significantly reduced in both AS and A.Compared to C,the principal response curve analyses of the prokaryotic and eukaryotic communities both showed an increasing trend followed by a decreasing trend for AS.Furthermore,the trends of prokaryotic and eukaryotic communities in group A were similar to those in group AS compared with group C,but AS changed them more than A did.According to the species weight table on principal response curves,a significant increase was observed in beneficial bacteria in prokaryotic communities,such as Rhodobacterales and Oceanospirillales,along with a decrease in autotrophs in eukaryotic communities,such as Chrysophyta and Diatom.Topological properties of network analysis reveal that A and AS complicate the interactions between the prokaryotic and eukaryotic communities.Overall,these findings expand our understanding of the response pattern of the bioaugmentation and biostimulation on coastal prokaryotic and eukaryotic communities.展开更多
Mountains exhibit a high degree of endemism and diversity,however,quantifying their biodiversity can be challenging.Similar to islands,species isolation in mountainous regions results in comparable patterns of evoluti...Mountains exhibit a high degree of endemism and diversity,however,quantifying their biodiversity can be challenging.Similar to islands,species isolation in mountainous regions results in comparable patterns of evolution and extinction,rendering their biodiversity unique and highly susceptible to anthropogenic threats.The topographic relief in mountains plays a crucial role in creating habitat complexity,which in turn contribute to high plant diversity.Here,we investigated plant diversity in the volcano mountaintop vegetation on the Poços de Caldas Plateau,a region situated in the ecotone between the Atlantic Forest and Cerrado,characterized by natural radiation and significant anthropogenic intervention.We employed an automated approach through the filtering of georeferenced and non-georeferenced data to obtain a list of plant species in the region.Additionally,we statistically investigated the similarity among different high-altitude vegetations belonging to the campos de altitude from the Atlantic Forest and campos rupestres from the Cerrado.The plateau exhibits high plant diversity,including 1,659 specific and infraspecific taxa,especially belonging to Asteraceae and Poaceae.Our analyses suggest that geographical distance is a strong predictor of dissimilarity and that the Poços de Caldas Plateau is more floristically related to the campos rupestres,despite being associated with campos de altitude.The region possesses a unique set of biodiversity,indicating that it may be a distinct formation.Additionally,we hypothesize that Pleistocene events likely influenced the conformation of the current floristic composition in the region through species interchange between the Cerrado and Atlantic Forest.Our study also highlights the few taxa assessed for conservation status and anthropogenic threats that this habitat is facing.展开更多
Eddies are major elements of ocean dynamics that affect ocean production.Understanding their effects on plankton distribution may help understand the dynamics of harmful phytoplankton blooms.Previous studies on the ef...Eddies are major elements of ocean dynamics that affect ocean production.Understanding their effects on plankton distribution may help understand the dynamics of harmful phytoplankton blooms.Previous studies on the effects of eddies in the northern Arabian Sea have primarily focused on the zooplankton community,and few have observed zooplankton dynamics during winter blooms of Noctiluca scintillans.We investigated zooplankton community structure and the related environmental variability during a N.scintillans bloom that was affected by an eddy in February 2018.The sampling stations were deployed at eddy core and eddy edge distinguished in salinity,temperature,and velocity.Results show that N.scintillans bloomed at the eddy core with high-velocity currents induced by warm eddies that moved from eddy core to eddy edge.As a result,blooms significantly changed the zooplankton community structure.Non-bloom stations had higher zooplankton diversity than bloom stations.Zooplankton at non-bloom stations were dominated by either tunicates or copepods,such as Thalia democratica and Pleuromamma gracilis.In addition to the influence of N.scintillans blooms,the velocity of eddy currents was a crucial factor on the similarities in the zooplankton community composition between eddy edge and eddy core.Moreover,the lower abiotic factors in bloom area contribute to the structuring of the zooplankton community during N.scintillans blooms.展开更多
In the context of China’s economic development and population aging,the innovation and exploration of the old-age care model has emerged as a new community transformation and development direction.Given the differing...In the context of China’s economic development and population aging,the innovation and exploration of the old-age care model has emerged as a new community transformation and development direction.Given the differing needs and characteristics of individuals across the lifespan,it is evident that a design approach that incorporates mixed-age integration and mutual-help communities is a viable strategy for enhancing intergenerational exchanges.This entails the creation of a diverse and open community that is conducive to habitation for individuals of all ages,encompassing the full spectrum of needs,from those of young children to the elderly.Such a community must be designed and constructed with the population in mind,from the initial planning and design stages to the operational phase.This encompasses a comprehensive range of services,including food,clothing,housing,transportation,and medical care and recreation.展开更多
We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It cha...We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.展开更多
Research has indicated that simple forest eco-system composition,structure and diversity have uncompli-cated community relationships and insufficient pest control capabilities.To investigate changing characteristics o...Research has indicated that simple forest eco-system composition,structure and diversity have uncompli-cated community relationships and insufficient pest control capabilities.To investigate changing characteristics of plant and insect communities in under pest outbreaks in Larix principis-rupprechtii plantations,the research areas were defined as mature(48–50 years)and young(24–29 years)infested stands along with healthy stands.The results show a reduction in the complexity and diversity of plant communi-ties and herbaceous plant guilds(polycultures of beneficial plants)and the complexity and dominance of insect com-munities,especially natural insect enemies.The results also show the relative simplicity of the main factors of commu-nity change and development that represent the characteris-tics of pest outbreaks in L.principis-rupprechtii plantations.The complexity and diversity of plant communities,particu-larly herbaceous plant guilds play a fundamental role in the regulation and development in forest ecosystems.展开更多
Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the fie...Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the field of mathematics.Design/methodology/approach:Two community detection algorithms,namely Greedy Modularity Maximization and Infomap,are utilized to examine collaboration patterns among mathematicians.We conduct a comparative analysis of mathematicians’centrality,emphasizing the influence of award-winning individuals in connecting network roles such as Betweenness,Closeness,and Harmonic centrality.Additionally,we investigate the distribution of elite mathematicians across communities and their relationships within different mathematical sub-fields.Findings:The study identifies the substantial influence exerted by award-winning mathematicians in connecting network roles.The elite distribution across the network is uneven,with a concentration within specific communities rather than being evenly dispersed.Secondly,the research identifies a positive correlation between distinct mathematical sub-fields and the communities,indicating collaborative tendencies among scientists engaged in related domains.Lastly,the study suggests that reduced research diversity within a community might lead to a higher concentration of elite scientists within that specific community.Research limitations:The study’s limitations include its narrow focus on mathematicians,which may limit the applicability of the findings to broader scientific fields.Issues with manually collected data affect the reliability of conclusions about collaborative networks.Practical implications:This study offers valuable insights into how elite mathematicians collaborate and how knowledge is disseminated within mathematical circles.Understanding these collaborative behaviors could aid in fostering better collaboration strategies among mathematicians and institutions,potentially enhancing scientific progress in mathematics.Originality/value:The study adds value to understanding collaborative dynamics within the realm of mathematics,offering a unique angle for further exploration and research.展开更多
The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhi...The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.展开更多
Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,for...Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.展开更多
In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media ...In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media tools can be defined and selected in the community planning process.First,this study describes the concept and theoretical basis of media used in community planning from the perspectives of the multiple effects of media evolution on communicative planning.Second,the classification criteria and typical characteristics of media tools used to support community planning are clarified from three dimensions:acceptability,cost effectiveness,and applicability.Third,strategies for applying media tools in the four phases of communicative planning-namely,state analysis,problem identification,contradictory solution and optimization-are described.Finally,trends in the development of media tools for community planning are explored in terms of multistakeholder engagement,supporting scientific decision-making and multiple-type media integration.The results provide a reference for developing more inclusive,effective,and appropriate media tools for enhancing decision-making capacity and modernizing governance in community planning and policy-making processes.展开更多
Nitrogen deposition and water tables are important factors to control soil microbial community structure.However,the specific effects and mechanisms of nitrogen deposition and water tables coupling on bacterial divers...Nitrogen deposition and water tables are important factors to control soil microbial community structure.However,the specific effects and mechanisms of nitrogen deposition and water tables coupling on bacterial diversity,abundance,and community structure in arid alpine wetlands remain unclear.The nitrogen deposition(0,10,and 20 kg N/(hm^(2)•a))experiments were conducted in the Bayinbulak alpine wetland with different water tables(perennial flooding,seasonal waterlogging,and perennial drying).The 16S rRNA(ribosomal ribonucleic acid)gene sequencing technology was employed to analyze the changes in bacterial community diversity,network structure,and function in the soil.Results indicated that bacterial diversity was the highest under seasonal waterlogging condition.However,nitrogen deposition only affected the bacterial Chao1 and beta diversity indices under seasonal waterlogging condition.The abundance of bacterial communities under different water tables showed significant differences at the phylum and genus levels.The dominant phylum,Proteobacteria,was sensitive to soil moisture and its abundance decreased with decreasing water tables.Although nitrogen deposition led to changes in bacterial abundance,such changes were small compared with the effects of water tables.Nitrogen deposition with 10 kg N/(hm^(2)•a)decreased bacterial edge number,average path length,and robustness.However,perennial flooding and drying conditions could simply resist environmental changes caused by 20 kg N/(hm^(2)•a)nitrogen deposition and their network structure remain unchanged.The sulfur cycle function was dominant under perennial flooding condition,and carbon and nitrogen cycle functions were dominant under seasonal waterlogging and perennial drying conditions.Nitrogen application increased the potential function of part of nitrogen cycle and decreased the potential function of sulfur cycle in bacterial community.In summary,composition of bacterial community in the arid alpine wetland was determined by water tables,and diversity of bacterial community was inhibited by a lower water table.Effect of nitrogen deposition on bacterial community structure and function depended on water tables.展开更多
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi...Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.展开更多
Soil soluble organic matter is an important component in the study of carbon and nitrogen cycling in terrestrial ecosystems. Soil microorganisms, as soil decomposers, participate in soil biogeochemical processes and p...Soil soluble organic matter is an important component in the study of carbon and nitrogen cycling in terrestrial ecosystems. Soil microorganisms, as soil decomposers, participate in soil biogeochemical processes and play an important role in maintaining the balance of soil ecosystems. As a typical subtropical regional unit, Queensland, Australia, is a relatively concentrated distribution area of forests in Australia. It is very sensitive to climate change and plays an important role in Australian climate and even global climate change. Its unique natural environment and ecosystem occupy a special position in the world. However, the knowledge of available carbon and nitrogen pool and microbial activity in forest soil is still very limited. Pinus elliottii, Araucaria cunninghamii and Agathis australis are the three most important forest types in southern Queensland, Australia. In our research, the function and structural diversity of soil microbial communities of these three forest types were studied using biochemical and molecular biological methods, and the effective carbon and nitrogen pools of soil of different forest types and related microbial processes were discussed, which has important theoretical guiding significance for further research on the structure and function of soil ecosystem. The number of PLFAs in the soil of P. elliottii was 45, the number of PLFAs in the soil of Araucaria cunninghamii and Agathis australis was 39 and 35, respectively. The number and content of PLFAs monomer in P. elliottii were higher than those in the other two kinds of forest soil.展开更多
To deepen the understanding in the effect of potassium lactate on the sensory quality and safety of Rugao ham,sensory attributes,physicochemical parameters,total volatile basic nitrogen(TVBN),microorganism community a...To deepen the understanding in the effect of potassium lactate on the sensory quality and safety of Rugao ham,sensory attributes,physicochemical parameters,total volatile basic nitrogen(TVBN),microorganism community and biogenic amines of Rugao ham manufactured with different potassium lactate levels(0%,0.5%,1%,2%)were investigated;the relationship between microbial community and the formation of TVBN and biogenic amines was further evaluated.With the increase of potassium lactate from 0%to 2%,the increased sensory scores and the decreased total aerobic bacterial count and TVBN were observed;the abundance of Staphylococcus increased,while the content of Halomonas decreased.LDA effect size(LEf Se)and correlations analysis showed that Staphylococcus equorum and Lactobacillus fermentum could be the key species to improve sensory scores and decrease biogenic amines and TVBN.Metabolic pathway analysis further showed that amino acids metabolism and nitrogen metabolism were mainly involved in decreasing TVBN and biogenic amines in the treatment of 2%potassium lactate.展开更多
The need for home palliative care is increasing in allWestern countries.Community pharmacists are local professionals whose role in end-of-life care at home remains poorly understood.The aim of this study is to unders...The need for home palliative care is increasing in allWestern countries.Community pharmacists are local professionals whose role in end-of-life care at home remains poorly understood.The aim of this study is to understand how community pharmacists see their role in end-of-life home care in France,and to analyze their experiences of this care.An online questionnaire was distributed to community pharmacists working in France between December 2022 and March 2023.Of the 136 respondents to the questionnaire,87%had accompanied at least one patient at the end of life in the 3 months preceding the survey.Therapeutic education(88%of respondents),psychological support for caregivers(85%of respondents),securing treatment(82%of respondents)and monitoring therapeutic compliance(80%of respondents)are the behaviors validated by the greatest number of participants.The majority of professionals surveyed had a positive overall experience of managing patients at the end of life.These results pave the way for pharmacists to better support end-of-life patients at home.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52075255,92160301,52175415,52205475,and 92060203)。
文摘The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.
基金This research was funded by the National Natural Science Foundation of China(Grant Nos.31870426).
文摘Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.
基金supported by the National Natural Science Foundation of China(32001733)the Earmarked fund for CARS(CARS-47)+3 种基金Guangxi Natural Science Foundation Program(2021GXNSFAA196023)Guangdong Basic and Applied Basic Research Foundation(2021A1515010833)Young Talent Support Project of Guangzhou Association for Science and Technology(QT20220101142)the Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences(2020TD69)。
文摘Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.
基金supported by the National Key Research and Development Program of China(2022YFD2301403-2)the Major Special Project of Anhui Province,China(2021d06050003)+2 种基金the Postdoctoral Foundation of Anhui Province,China(2022B638)the Special Project of Zhongke Bengbu Technology Transfer Center,China(ZKBB202103)the Grant of the President Foundation of Hefei Institutes of Physical Science of Chinese Academy of Sciences(YZJJ2023QN37)。
文摘Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.
基金funded by the Guangxi Natural Science Foundation Program (2022GXNSFAA035583 and 2020GXNSFAA159108)National Natural Science Foundation of China (32060305)+2 种基金Foundation of Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of Education, China (ERESEP 2021Z06)Chinese Forest Biodiversity Monitoring Network
文摘Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.
基金supported by the National Natural Science Foundation of China(No.42077219)the Ningbo Municipal Natural Science Foundation(No.2019A610443)+1 种基金the Hangzhou Municipal Agriculture and Social Development Project(No.2020ZDSJ0697)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.SJLY2020011)
文摘Globally,various types of pollution affect coastal waters as a result of human activities.Bioaugmentation and biostimulation are effective methods for treating water pollution.However,few studies have explored the response of coastal prokaryotic and eukaryotic communities to bioaugmentation and biostimulation.Here,a 28-day outdoor mesocosm experiment with two treatments(bioaugmentation-A and combined treatment of bioaugmentation and biostimulation-AS)and a control(untreated-C)were carried out.The experiment was conducted in Meishan Bay to explore the composition,dynamics,and co-occurrence patterns of prokaryotic and eukaryotic communities in response to the A and AS using 16S rRNA and 18S rRNA gene amplicon sequencing.After treatment,Gammaproteobacteria and Epsilonproteobacteria were significantly increased in group AS compared to group C,while Flavobacteriia and Saprospirae were significantly reduced.Dinoflagellata was significantly reduced in AS compared to C,while Chrysophyta was significantly reduced in both AS and A.Compared to C,the principal response curve analyses of the prokaryotic and eukaryotic communities both showed an increasing trend followed by a decreasing trend for AS.Furthermore,the trends of prokaryotic and eukaryotic communities in group A were similar to those in group AS compared with group C,but AS changed them more than A did.According to the species weight table on principal response curves,a significant increase was observed in beneficial bacteria in prokaryotic communities,such as Rhodobacterales and Oceanospirillales,along with a decrease in autotrophs in eukaryotic communities,such as Chrysophyta and Diatom.Topological properties of network analysis reveal that A and AS complicate the interactions between the prokaryotic and eukaryotic communities.Overall,these findings expand our understanding of the response pattern of the bioaugmentation and biostimulation on coastal prokaryotic and eukaryotic communities.
基金IFSULDEMINAS-Campus Poços de Caldas for supporting the research.
文摘Mountains exhibit a high degree of endemism and diversity,however,quantifying their biodiversity can be challenging.Similar to islands,species isolation in mountainous regions results in comparable patterns of evolution and extinction,rendering their biodiversity unique and highly susceptible to anthropogenic threats.The topographic relief in mountains plays a crucial role in creating habitat complexity,which in turn contribute to high plant diversity.Here,we investigated plant diversity in the volcano mountaintop vegetation on the Poços de Caldas Plateau,a region situated in the ecotone between the Atlantic Forest and Cerrado,characterized by natural radiation and significant anthropogenic intervention.We employed an automated approach through the filtering of georeferenced and non-georeferenced data to obtain a list of plant species in the region.Additionally,we statistically investigated the similarity among different high-altitude vegetations belonging to the campos de altitude from the Atlantic Forest and campos rupestres from the Cerrado.The plateau exhibits high plant diversity,including 1,659 specific and infraspecific taxa,especially belonging to Asteraceae and Poaceae.Our analyses suggest that geographical distance is a strong predictor of dissimilarity and that the Poços de Caldas Plateau is more floristically related to the campos rupestres,despite being associated with campos de altitude.The region possesses a unique set of biodiversity,indicating that it may be a distinct formation.Additionally,we hypothesize that Pleistocene events likely influenced the conformation of the current floristic composition in the region through species interchange between the Cerrado and Atlantic Forest.Our study also highlights the few taxa assessed for conservation status and anthropogenic threats that this habitat is facing.
基金Supported by the World Academy of Sciences(TWAS)the Chinese Academy of Sciences(CAS)+4 种基金the National Natural Science Foundation of China(Nos.31971432,41506161)the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML 2019 ZD 0405)the Guangdong Marine Economy Promotion Projects Fund(No.GDOE[2019]A 32)the Science and Technology Planning Project of Guangdong Province,China(No.2017 B 0303014052)the Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(No.ISEE 2018 PY 01)。
文摘Eddies are major elements of ocean dynamics that affect ocean production.Understanding their effects on plankton distribution may help understand the dynamics of harmful phytoplankton blooms.Previous studies on the effects of eddies in the northern Arabian Sea have primarily focused on the zooplankton community,and few have observed zooplankton dynamics during winter blooms of Noctiluca scintillans.We investigated zooplankton community structure and the related environmental variability during a N.scintillans bloom that was affected by an eddy in February 2018.The sampling stations were deployed at eddy core and eddy edge distinguished in salinity,temperature,and velocity.Results show that N.scintillans bloomed at the eddy core with high-velocity currents induced by warm eddies that moved from eddy core to eddy edge.As a result,blooms significantly changed the zooplankton community structure.Non-bloom stations had higher zooplankton diversity than bloom stations.Zooplankton at non-bloom stations were dominated by either tunicates or copepods,such as Thalia democratica and Pleuromamma gracilis.In addition to the influence of N.scintillans blooms,the velocity of eddy currents was a crucial factor on the similarities in the zooplankton community composition between eddy edge and eddy core.Moreover,the lower abiotic factors in bloom area contribute to the structuring of the zooplankton community during N.scintillans blooms.
文摘In the context of China’s economic development and population aging,the innovation and exploration of the old-age care model has emerged as a new community transformation and development direction.Given the differing needs and characteristics of individuals across the lifespan,it is evident that a design approach that incorporates mixed-age integration and mutual-help communities is a viable strategy for enhancing intergenerational exchanges.This entails the creation of a diverse and open community that is conducive to habitation for individuals of all ages,encompassing the full spectrum of needs,from those of young children to the elderly.Such a community must be designed and constructed with the population in mind,from the initial planning and design stages to the operational phase.This encompasses a comprehensive range of services,including food,clothing,housing,transportation,and medical care and recreation.
基金Project supported by the Ministry of Education of China in the later stage of philosophy and social science research(Grant No.19JHG091)the National Natural Science Foundation of China(Grant No.72061003)+1 种基金the Major Program of National Social Science Fund of China(Grant No.20&ZD155)the Guizhou Provincial Science and Technology Projects(Grant No.[2020]4Y172)。
文摘We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.
文摘Research has indicated that simple forest eco-system composition,structure and diversity have uncompli-cated community relationships and insufficient pest control capabilities.To investigate changing characteristics of plant and insect communities in under pest outbreaks in Larix principis-rupprechtii plantations,the research areas were defined as mature(48–50 years)and young(24–29 years)infested stands along with healthy stands.The results show a reduction in the complexity and diversity of plant communi-ties and herbaceous plant guilds(polycultures of beneficial plants)and the complexity and dominance of insect com-munities,especially natural insect enemies.The results also show the relative simplicity of the main factors of commu-nity change and development that represent the characteris-tics of pest outbreaks in L.principis-rupprechtii plantations.The complexity and diversity of plant communities,particu-larly herbaceous plant guilds play a fundamental role in the regulation and development in forest ecosystems.
基金supported by grants from the National Natural Science Foundation of China No.NSFC62006109 and NSFC12031005the 13th Five-year plan for Education Science Funding of Guangdong Province No.2021GXJK349,No.2020GXJK457the Stable Support Plan Program of Shenzhen Natural Science Fund No.20220814165010001.
文摘Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the field of mathematics.Design/methodology/approach:Two community detection algorithms,namely Greedy Modularity Maximization and Infomap,are utilized to examine collaboration patterns among mathematicians.We conduct a comparative analysis of mathematicians’centrality,emphasizing the influence of award-winning individuals in connecting network roles such as Betweenness,Closeness,and Harmonic centrality.Additionally,we investigate the distribution of elite mathematicians across communities and their relationships within different mathematical sub-fields.Findings:The study identifies the substantial influence exerted by award-winning mathematicians in connecting network roles.The elite distribution across the network is uneven,with a concentration within specific communities rather than being evenly dispersed.Secondly,the research identifies a positive correlation between distinct mathematical sub-fields and the communities,indicating collaborative tendencies among scientists engaged in related domains.Lastly,the study suggests that reduced research diversity within a community might lead to a higher concentration of elite scientists within that specific community.Research limitations:The study’s limitations include its narrow focus on mathematicians,which may limit the applicability of the findings to broader scientific fields.Issues with manually collected data affect the reliability of conclusions about collaborative networks.Practical implications:This study offers valuable insights into how elite mathematicians collaborate and how knowledge is disseminated within mathematical circles.Understanding these collaborative behaviors could aid in fostering better collaboration strategies among mathematicians and institutions,potentially enhancing scientific progress in mathematics.Originality/value:The study adds value to understanding collaborative dynamics within the realm of mathematics,offering a unique angle for further exploration and research.
基金funded by the Natural Science Foundation of China(No.41807041)the Science and Technology Research Project of Henan Province(242102111101)the Mechanical Design,Manufacturing,and Automation Key Discipline of Henan Province(JG[2018]No.119).
文摘The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.
基金supported by the National Natural Science Foundation of China(U22A20501)the National Key Research and Development Plan of China(2022YFD1500601)+4 种基金the National Science and Technology Fundamental Resources Investigation Program of China(2018FY100304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28090200)the Liaoning Province Applied Basic Research Plan Program,China(2022JH2/101300184)the Shenyang Science and Technology Plan Program,China(21-109-305)the Liaoning Outstanding Innovation Team,China(XLYC2008015)。
文摘Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.
基金supported by the National Key Research and Development Program of China under the theme“Key technologies for urban sustainable development evaluation and decision-making support”[Grant No.2022YFC3802900].
文摘In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media tools can be defined and selected in the community planning process.First,this study describes the concept and theoretical basis of media used in community planning from the perspectives of the multiple effects of media evolution on communicative planning.Second,the classification criteria and typical characteristics of media tools used to support community planning are clarified from three dimensions:acceptability,cost effectiveness,and applicability.Third,strategies for applying media tools in the four phases of communicative planning-namely,state analysis,problem identification,contradictory solution and optimization-are described.Finally,trends in the development of media tools for community planning are explored in terms of multistakeholder engagement,supporting scientific decision-making and multiple-type media integration.The results provide a reference for developing more inclusive,effective,and appropriate media tools for enhancing decision-making capacity and modernizing governance in community planning and policy-making processes.
基金supported by the National Natural Science Foundation of China(31960258)the Graduate Research Innovation Project of Xinjiang Uygur Autonomous Region(XJ2023G119).
文摘Nitrogen deposition and water tables are important factors to control soil microbial community structure.However,the specific effects and mechanisms of nitrogen deposition and water tables coupling on bacterial diversity,abundance,and community structure in arid alpine wetlands remain unclear.The nitrogen deposition(0,10,and 20 kg N/(hm^(2)•a))experiments were conducted in the Bayinbulak alpine wetland with different water tables(perennial flooding,seasonal waterlogging,and perennial drying).The 16S rRNA(ribosomal ribonucleic acid)gene sequencing technology was employed to analyze the changes in bacterial community diversity,network structure,and function in the soil.Results indicated that bacterial diversity was the highest under seasonal waterlogging condition.However,nitrogen deposition only affected the bacterial Chao1 and beta diversity indices under seasonal waterlogging condition.The abundance of bacterial communities under different water tables showed significant differences at the phylum and genus levels.The dominant phylum,Proteobacteria,was sensitive to soil moisture and its abundance decreased with decreasing water tables.Although nitrogen deposition led to changes in bacterial abundance,such changes were small compared with the effects of water tables.Nitrogen deposition with 10 kg N/(hm^(2)•a)decreased bacterial edge number,average path length,and robustness.However,perennial flooding and drying conditions could simply resist environmental changes caused by 20 kg N/(hm^(2)•a)nitrogen deposition and their network structure remain unchanged.The sulfur cycle function was dominant under perennial flooding condition,and carbon and nitrogen cycle functions were dominant under seasonal waterlogging and perennial drying conditions.Nitrogen application increased the potential function of part of nitrogen cycle and decreased the potential function of sulfur cycle in bacterial community.In summary,composition of bacterial community in the arid alpine wetland was determined by water tables,and diversity of bacterial community was inhibited by a lower water table.Effect of nitrogen deposition on bacterial community structure and function depended on water tables.
基金funded by the National Key Research and Development Program of China(2023YFD150050504)the Key Research and Development Program of Shandong Province,China(2022SFGC0301)the Strategic Priority Research Program of the Chinese Academy of Sciences-Development and Application Technology of Special Package Fertilizer for Improving Albic Soil(XDA28100203)。
文摘Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.
文摘Soil soluble organic matter is an important component in the study of carbon and nitrogen cycling in terrestrial ecosystems. Soil microorganisms, as soil decomposers, participate in soil biogeochemical processes and play an important role in maintaining the balance of soil ecosystems. As a typical subtropical regional unit, Queensland, Australia, is a relatively concentrated distribution area of forests in Australia. It is very sensitive to climate change and plays an important role in Australian climate and even global climate change. Its unique natural environment and ecosystem occupy a special position in the world. However, the knowledge of available carbon and nitrogen pool and microbial activity in forest soil is still very limited. Pinus elliottii, Araucaria cunninghamii and Agathis australis are the three most important forest types in southern Queensland, Australia. In our research, the function and structural diversity of soil microbial communities of these three forest types were studied using biochemical and molecular biological methods, and the effective carbon and nitrogen pools of soil of different forest types and related microbial processes were discussed, which has important theoretical guiding significance for further research on the structure and function of soil ecosystem. The number of PLFAs in the soil of P. elliottii was 45, the number of PLFAs in the soil of Araucaria cunninghamii and Agathis australis was 39 and 35, respectively. The number and content of PLFAs monomer in P. elliottii were higher than those in the other two kinds of forest soil.
基金supported by National Natural Science Foundation of China(32022066,32101975)Zhejiang Province Natural Science Foundation(LQ22C200017)+1 种基金China Postdoctoral Foundation(2020M681806,2021T140348)Science and Technology Programs of Ningbo(202003N4130,202002N3067)。
文摘To deepen the understanding in the effect of potassium lactate on the sensory quality and safety of Rugao ham,sensory attributes,physicochemical parameters,total volatile basic nitrogen(TVBN),microorganism community and biogenic amines of Rugao ham manufactured with different potassium lactate levels(0%,0.5%,1%,2%)were investigated;the relationship between microbial community and the formation of TVBN and biogenic amines was further evaluated.With the increase of potassium lactate from 0%to 2%,the increased sensory scores and the decreased total aerobic bacterial count and TVBN were observed;the abundance of Staphylococcus increased,while the content of Halomonas decreased.LDA effect size(LEf Se)and correlations analysis showed that Staphylococcus equorum and Lactobacillus fermentum could be the key species to improve sensory scores and decrease biogenic amines and TVBN.Metabolic pathway analysis further showed that amino acids metabolism and nitrogen metabolism were mainly involved in decreasing TVBN and biogenic amines in the treatment of 2%potassium lactate.
基金Cetteétude aétéréalisée grâce au soutien financier de la Fondation de France (numéro d’engagement 00101618).
文摘The need for home palliative care is increasing in allWestern countries.Community pharmacists are local professionals whose role in end-of-life care at home remains poorly understood.The aim of this study is to understand how community pharmacists see their role in end-of-life home care in France,and to analyze their experiences of this care.An online questionnaire was distributed to community pharmacists working in France between December 2022 and March 2023.Of the 136 respondents to the questionnaire,87%had accompanied at least one patient at the end of life in the 3 months preceding the survey.Therapeutic education(88%of respondents),psychological support for caregivers(85%of respondents),securing treatment(82%of respondents)and monitoring therapeutic compliance(80%of respondents)are the behaviors validated by the greatest number of participants.The majority of professionals surveyed had a positive overall experience of managing patients at the end of life.These results pave the way for pharmacists to better support end-of-life patients at home.