Detection of community structures in the complex networks is significant to understand the network structures and analyze the network properties. However, it is still a problem on how to select initial seeds as well a...Detection of community structures in the complex networks is significant to understand the network structures and analyze the network properties. However, it is still a problem on how to select initial seeds as well as to determine the number of communities. In this paper, we proposed the detecting overlapping communities based on vital nodes algorithm(DOCBVA), an algorithm based on vital nodes and initial seeds to detect overlapping communities. First, through some screening method, we find the vital nodes and then the seed communities through the pretreatment of vital nodes. This process differs from most existing methods, and the speed is faster. Then the seeds will be extended. We also adopt a new parameter of attribution degree to extend the seeds and find the overlapping communities. Finally, the remaining nodes that have not been processed in the first two steps will be reprocessed. The number of communities is likely to change until the end of algorithm. The experimental results using some real-world network data and artificial network data are satisfactory and can prove the superiority of the DOCBVA algorithm.展开更多
Bhutan is a small landlocked country located in the eastern Himalayas. Over 69% of the population is engaged in agriculture. Rice, maize, wheat, barley, buckwheat and millets are the major cereal crops cultivated. Ric...Bhutan is a small landlocked country located in the eastern Himalayas. Over 69% of the population is engaged in agriculture. Rice, maize, wheat, barley, buckwheat and millets are the major cereal crops cultivated. Rice is the most preferred food crop of the Bhutanese. Maize is a primary food crop after rice and it ranks first among food crops in production. The cultivation ranges from less than 300 m asl (metres above sea level) nearly up to 2,800 m asl. In 2007, a new, extremely serious problem of GLS (gray leaf spot) in maize that was previously never reported in Bhutan was confirmed. This disease spread rapidly in the highland maize growing areas causing production losses of over 50% to 70%. All the maize varieties cultivated in the country were found to be highly susceptible to the disease. In order to contain this devastating disease, the national maize program drew short and long term strategies with the help of a CIMMYT Expert. As an immediate short term action to contain GLS, systemic fungicide Tilt 25 EC (active ingredient propiconazole) was supplied free of cost to the farmers. A longer term strategy pursued was the introduction, e'valuation and selection of GLS tolerant genotypes for the highland ecosystem. Over 100 GLS tolerant genotypes vcere introduced from CIMMYT Colombia, Mexico, Zimbabwe and Nepal. These materials were initially evaluated in a disease hotspot sites and then further tested in multi-location trials in GLS affected areas across the country. Farmers were engaged for Participatory Variety Selection by organizing farmer's field days at the trial sites. Finally, in 2011 considering the need of GLS tolerant varieties for farmers, two GLS tolerant genotypes ICAV305 and S03TLYQAB05 were provisionally released. In the 2011 season, these two provisionally released genotypes were put under large scale demonstration in the GLS affected areas in nine districts across the country. In 2012, the two genotypes were formally released by the Technology Release Committee of the Ministry of Agriculture and Forest. Rapid seed increase of the new varieties was initiated through farmers from Community Based Seed Production groups and so far 75% seed replacement of GLS affected farmers has been accomplished.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61672124,61370145,61173183,and 61503375)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund,China(Grant No.MMJJ20170203)
文摘Detection of community structures in the complex networks is significant to understand the network structures and analyze the network properties. However, it is still a problem on how to select initial seeds as well as to determine the number of communities. In this paper, we proposed the detecting overlapping communities based on vital nodes algorithm(DOCBVA), an algorithm based on vital nodes and initial seeds to detect overlapping communities. First, through some screening method, we find the vital nodes and then the seed communities through the pretreatment of vital nodes. This process differs from most existing methods, and the speed is faster. Then the seeds will be extended. We also adopt a new parameter of attribution degree to extend the seeds and find the overlapping communities. Finally, the remaining nodes that have not been processed in the first two steps will be reprocessed. The number of communities is likely to change until the end of algorithm. The experimental results using some real-world network data and artificial network data are satisfactory and can prove the superiority of the DOCBVA algorithm.
文摘Bhutan is a small landlocked country located in the eastern Himalayas. Over 69% of the population is engaged in agriculture. Rice, maize, wheat, barley, buckwheat and millets are the major cereal crops cultivated. Rice is the most preferred food crop of the Bhutanese. Maize is a primary food crop after rice and it ranks first among food crops in production. The cultivation ranges from less than 300 m asl (metres above sea level) nearly up to 2,800 m asl. In 2007, a new, extremely serious problem of GLS (gray leaf spot) in maize that was previously never reported in Bhutan was confirmed. This disease spread rapidly in the highland maize growing areas causing production losses of over 50% to 70%. All the maize varieties cultivated in the country were found to be highly susceptible to the disease. In order to contain this devastating disease, the national maize program drew short and long term strategies with the help of a CIMMYT Expert. As an immediate short term action to contain GLS, systemic fungicide Tilt 25 EC (active ingredient propiconazole) was supplied free of cost to the farmers. A longer term strategy pursued was the introduction, e'valuation and selection of GLS tolerant genotypes for the highland ecosystem. Over 100 GLS tolerant genotypes vcere introduced from CIMMYT Colombia, Mexico, Zimbabwe and Nepal. These materials were initially evaluated in a disease hotspot sites and then further tested in multi-location trials in GLS affected areas across the country. Farmers were engaged for Participatory Variety Selection by organizing farmer's field days at the trial sites. Finally, in 2011 considering the need of GLS tolerant varieties for farmers, two GLS tolerant genotypes ICAV305 and S03TLYQAB05 were provisionally released. In the 2011 season, these two provisionally released genotypes were put under large scale demonstration in the GLS affected areas in nine districts across the country. In 2012, the two genotypes were formally released by the Technology Release Committee of the Ministry of Agriculture and Forest. Rapid seed increase of the new varieties was initiated through farmers from Community Based Seed Production groups and so far 75% seed replacement of GLS affected farmers has been accomplished.