期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
COMONOTONE APPROXIMATION WITH INTERPOLATION AT THE ENDS ON AN INTERVAL
1
作者 G.A.Dzyubenko 《Analysis in Theory and Applications》 2006年第3期233-245,共13页
Let a function f E C[-1, 1], changes its monotonisity at the finite collection Y := {y1,……, ys} of s points Yi ∈ (-1, 1). For each n 〉 N(Y), we construct an algebraic polynomial Pn, of degree 〈 n, which is c... Let a function f E C[-1, 1], changes its monotonisity at the finite collection Y := {y1,……, ys} of s points Yi ∈ (-1, 1). For each n 〉 N(Y), we construct an algebraic polynomial Pn, of degree 〈 n, which is comonotone with f, that is changes its monotonisity at the same points yi as f, and |f(x) - Pn(x)| ≤ c(s)ω2 (f1 √1-x^2/n),x∈ [-1,1] where N(Y) is a constant depending only on Y, c(s) is a constant depending only on s and ω2 (f, t) is the second modulus of smoothness of f. 展开更多
关键词 comonotone polynomial approximation pointwise estimates
下载PDF
Nearly Comonotone Approximation of Periodic Functions
2
作者 G. A. Dzyubenko 《Analysis in Theory and Applications》 CSCD 2017年第1期74-92,共19页
Suppose that a continuous 2re-periodic function f on the real axis changes its monotonicity at points Yi In this paper, for each n _ N, a trigonometric polynomial Pn of order cn is found such that: Pn has the same ... Suppose that a continuous 2re-periodic function f on the real axis changes its monotonicity at points Yi In this paper, for each n _ N, a trigonometric polynomial Pn of order cn is found such that: Pn has the same monotonicity as f, everywhere except, perhaps, the small intervals. 展开更多
关键词 Periodic functions comonotone approximation trigonometric polynomials Jackson-type estimates.
下载PDF
分母为正系数多项式的有理函数逼近的整体和点态估计 被引量:1
3
作者 虞旦盛 周颂平 《数学物理学报(A辑)》 CSCD 北大核心 2011年第2期305-319,共15页
对任意定义在[0,1]上的非负连续函数f(x)(f■0),该文证得:存在一个正系数多项式P_n(x)∈Π_n(+),使得其中A_n(x)=(x(1-x))^(1/2)+1/n^(1/2),0≤λ≤1,而Π_n(+)表示由所有次数不超过n的正系数多项式构成的集合.当f(x)在(0,1)内恰好改变... 对任意定义在[0,1]上的非负连续函数f(x)(f■0),该文证得:存在一个正系数多项式P_n(x)∈Π_n(+),使得其中A_n(x)=(x(1-x))^(1/2)+1/n^(1/2),0≤λ≤1,而Π_n(+)表示由所有次数不超过n的正系数多项式构成的集合.当f(x)在(0,1)内恰好改变l次符号时,该文构造了有理函数r(x)∈R_n^l(+)。 展开更多
关键词 正系数多项式 有理函数 逼近阶 整体估计 点态估计
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部