The diversity of sandstone diagenesis mechanisms caused by the complex geological conditions of oil/gas basins in China could hardly be reasonably explained by the traditional concept of burial diagenesis. Three genes...The diversity of sandstone diagenesis mechanisms caused by the complex geological conditions of oil/gas basins in China could hardly be reasonably explained by the traditional concept of burial diagenesis. Three genesis types of thermal diagenesis, tectonic diagenesis and fluid diagenesis are presented on the basis of the dynamic environment of the oil/gas basins and.the controlling factors and mechanisms of sandstone diagenesis. Thermal diagenesis of sandstone reservoirs is related not only to the effect of formation temperature on diagenesis, but also to the significant changes in diagenesis caused by geothermal gradients. The concept of thermal compaction is presented. Thermal compaction becomes weaker with increasing depth and becomes stronger at a higher geothermal gradient. At the same formation temperature, the sandstone porosity in the region with a lower geothermal gradient is e^0.077+0.0042T times higher than that in the region with a higher geothermal gradient. Both sudden and gradual changes are observed in diagenetic evolution caused by structural deformation. Average sandstone compaction increased by 0.1051% for every 1.0MPa increase of lateral tectonic compressional stress, while late tectonic napping helped to preserve a higher porosity of underlying sandstone reservoir. Fluid diagenesis is a general phenomenon. The compaction caused by fluid properties is significant. The coarser the grain size, the stronger the fluid effect on compaction. The greater the burial depth, the weaker the fluid effect on compaction for the specific reservoir lithology and the greater the difference in the fluid effects on compaction between different grain sizes.展开更多
The application of swirl tube cyclone for gas-liquid separation is attractive due to its small size and weight. However, very scarce information on the performance of the swirl tube cyclone especially at high operatin...The application of swirl tube cyclone for gas-liquid separation is attractive due to its small size and weight. However, very scarce information on the performance of the swirl tube cyclone especially at high operating pressure emulating actual field condition was published in journals. Performance assessment was usually done at a low operating pressure using either air-water, air-fine particle mixtures or dense gas such as SF6 . This paper fills the existing gaps and reports the initial findings on the performance assessment of a horizontal swirl tube cyclone for gas-liquid separation operating at a flow rate of 5 MMSCFD at 40-60 bar operating pressure.展开更多
In this article, we study the global L^∞ entropy solutions for the Cauchy problem of system of isentropic gas dynamics in a divergent nozzle with a friction. Especially when the adiabatic exponent γ=3, we apply for ...In this article, we study the global L^∞ entropy solutions for the Cauchy problem of system of isentropic gas dynamics in a divergent nozzle with a friction. Especially when the adiabatic exponent γ=3, we apply for the maximum principle to obtain the L^∞ estimates w(ρ^δ,ε, u^δ,ε)≤ B(t) and z(ρ^δ,ε, u^δ,ε)≤ B(t) for the viscosity solutions (ρ^δ,ε, u^δ,ε), where B(t) is a nonnegative bounded function for any finite time t. This work, in the special case γ≥ 3, extends the previous works, which provided the global entropy solutions for the same Cauchy problem with the restriction w(ρ^δ,ε, u^δ,ε)≤ 0 or z(ρ^δ,ε, u^δ,ε)≤ 0.展开更多
文摘The diversity of sandstone diagenesis mechanisms caused by the complex geological conditions of oil/gas basins in China could hardly be reasonably explained by the traditional concept of burial diagenesis. Three genesis types of thermal diagenesis, tectonic diagenesis and fluid diagenesis are presented on the basis of the dynamic environment of the oil/gas basins and.the controlling factors and mechanisms of sandstone diagenesis. Thermal diagenesis of sandstone reservoirs is related not only to the effect of formation temperature on diagenesis, but also to the significant changes in diagenesis caused by geothermal gradients. The concept of thermal compaction is presented. Thermal compaction becomes weaker with increasing depth and becomes stronger at a higher geothermal gradient. At the same formation temperature, the sandstone porosity in the region with a lower geothermal gradient is e^0.077+0.0042T times higher than that in the region with a higher geothermal gradient. Both sudden and gradual changes are observed in diagenetic evolution caused by structural deformation. Average sandstone compaction increased by 0.1051% for every 1.0MPa increase of lateral tectonic compressional stress, while late tectonic napping helped to preserve a higher porosity of underlying sandstone reservoir. Fluid diagenesis is a general phenomenon. The compaction caused by fluid properties is significant. The coarser the grain size, the stronger the fluid effect on compaction. The greater the burial depth, the weaker the fluid effect on compaction for the specific reservoir lithology and the greater the difference in the fluid effects on compaction between different grain sizes.
文摘The application of swirl tube cyclone for gas-liquid separation is attractive due to its small size and weight. However, very scarce information on the performance of the swirl tube cyclone especially at high operating pressure emulating actual field condition was published in journals. Performance assessment was usually done at a low operating pressure using either air-water, air-fine particle mixtures or dense gas such as SF6 . This paper fills the existing gaps and reports the initial findings on the performance assessment of a horizontal swirl tube cyclone for gas-liquid separation operating at a flow rate of 5 MMSCFD at 40-60 bar operating pressure.
基金supported by the Zhejiang Natural Science Foundation of China(LQ13A010022)supported by the Qianjiang professorship of Zhejiang Province of Chinathe National Natural Science Foundation of China(11271105)
文摘In this article, we study the global L^∞ entropy solutions for the Cauchy problem of system of isentropic gas dynamics in a divergent nozzle with a friction. Especially when the adiabatic exponent γ=3, we apply for the maximum principle to obtain the L^∞ estimates w(ρ^δ,ε, u^δ,ε)≤ B(t) and z(ρ^δ,ε, u^δ,ε)≤ B(t) for the viscosity solutions (ρ^δ,ε, u^δ,ε), where B(t) is a nonnegative bounded function for any finite time t. This work, in the special case γ≥ 3, extends the previous works, which provided the global entropy solutions for the same Cauchy problem with the restriction w(ρ^δ,ε, u^δ,ε)≤ 0 or z(ρ^δ,ε, u^δ,ε)≤ 0.